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A B S T R A C T  

We prove Kh inch in ' s  Theorems  for Gelfand pairs  (G, K )  sat isfying a con- 

di t ion (*): (a) G is connected;  (b) G is a lmost  connected  and  Ad (G/M)  
is a lmost  algebraic for some compac t  normal  subgroup  M; (c) G admi t s  a 

compac t  open normal  subgroup;  (d) (G, K)  is symmet r i c  and  G is 2-root 

compact ;  (e) G is a Zariski-connected p-adic algebraic group; (f) com- 

pact  extens ion of un ipo ten t  algebraic groups;  (g) compac t  ex tens ion  of 

connec ted  ni lpotent  groups.  In fact,  condi t ion (*) t u rns  out  to be neces- 

sary  and  sufficient for K-b i invar ian t  measures  on aforement ioned Gelfand 

pairs to be Hungar ian .  We also prove t ha t  Cram~r ' s  theorem does not  

hold for a class of Gauss ians  on compac t  Gelfand pairs.  
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1. I n t r o d u c t i o n  

A classical theorem of Khinchin known as Khinchin's factorization theorem, 

which we call Khinchin's first theorem, says that any probability measure on R 

can be written as a countable product of indecomposable measures (possibly infi- 

nite) and a probability measure without indecomposable factors. Khinchin's fac- 

torization theorem was extended to all commutative Hausdorff metrizable groups 

by Ruzsa and Szekely (see [RS]). In [RS] Khinchin's factorization for measures on 

abelian Hausdorff groups is achieved by proving that the semigroup of probabil- 

ity measures on such groups forms a first countable Hungarian semigroup. The 

notion of Hungarian semigroups was introduced by Ruzsa and Szekely and stud- 

ied in [RS]. It is shown in [RS] that any element in a first countable Hungarian 

semigroup is a countable product of indecomposable elements (possibly infinite) 

and an anti-indecomposable element. It is shown in [R] that the semigroup of 

K-biinvariant probability measures on real or p-adic noncompact reductive sym- 

metric spaces is a Hungarian semigroup and hence the factorization theorem 

holds for such semigroups. 

Another classical theorem of Khinchin, which we call Khinchin's second theo- 

rem, says that  any anti-indecomposable measure on R is infinitely divisible. This 

result was extended to many other groups by various authors. In [RS], Khinchin's 

second theorem is also proved for anti-indecomposable measures on first count- 

able abelian Hausdorff groups by showing that semigroup of measures on such 

groups form a normable Hungarian semigroup. 

At this point we note that a Delphic semigroup is another approach to prove 

the Khinchin's Theorems for an abelian semigroup. It has been proved in [G3] 

that the semigroup of measures on noncompact symmetric spaces form a Del- 

phic semigroup but it can easily be seen that measures on compact symmetric 

spaces do not form a Delphic semigroup (see [G3] for the definition of a Delphic 

semigroup). 

The study of probability questions on Gelfand pairs was initiated by Letac in 

[Le] and by Heyer in [Hel] and [He2] where the author proves the Khinchin type 

factorization result for some class of Gelfand pairs. 

In this article we at tempt  to prove Khinchin's Theorems for measures on 

Gelfand pairs. In section 2 we introduce the concept of Gelfand pair and we 

also prove some preliminary results which are needed in the succeeding sections 

to prove Khinchin's Theorems. In section 3 we prove results on factor compact- 

ness which are needed in proving Khinchin's Theorems. In section 4, we prove 

Khinchin's Theorems for connected Gelfand pairs. In sections 5 and 6, we prove 
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Khinchin's Theorems for certain Gelfand pairs which include discrete groups and 

doubly transitive groups and p-adic algebraic groups. 

One of the axioms of a Hungarian semigroup is that  the set of factors of an 

element is compact modulo the group of units. Some applications of this type of 

factor compactness in analysis and arithmetic of probability measures are limit 

theorems and embedding of infinitely divisible measures; see [S1], [$2] and [Te] 

for more details on limit theorems on general locally compact groups. In section 

7 we obtain limit theorems for measures on certain Gelfand pairs and also obtain 

the embeddability of infinitely divisible measures on certain Gelfand pairs; the 

embedding problem for general groups is studied by various authors (see [Mc]). 

One more classical theorem of Khinchin, which we call Khinchin's third theo- 

rem, says that infinitesimal limits are infinitely divisible. This result was extended 

by Ruzsa and Szekely to abelian metrizable groups such that  the set of characters 

separates points of the groups by showing that the semigroup of probability mea- 

sures on such groups forms a stable normable Hungarian semigroup (see [RS]). 

In section 8 we prove the normability, which in turn proves the second and third 

theorems of Khinchin for Gelfand pairs. 

In section 9 we discuss Gaussian measures on compact Gelfand pairs and prove 

that Gaussian measures are not in the class of anti-indecomposable measures. 

This in particular implies that  Gaussian measures on certain compact Gelfand 

pairs do not satisfy Cram~r's theorem: Cram~r's theorem says that Gaussian 

measures on reals have only Gaussian factors and Cram~r's theorem was gener- 

alized to abelian groups by various authors (see [Fe]) and to symmetric spaces of 

noncompact type by Graczyk (see [G2]). While proving this we obtain a class of 

measures which have indecomposable factors. In the last section we make some 

remarks on central limit theorems of Lindeberg-Feller type for probabilities on 

Gelfand pairs. 

2. Pre l iminar ie s  

Let G be a locally compact second countable group and K be a compact subgroup 

of G. Then we say that the pair (G, K) is a G e l f a n d  pa i r  if the convolution 

semigroup PK (G) of all K-biinvariant probability measures on G is a commuta- 

tive semigroup; see IS JR], [F], [GV] and [MV] for more on harmonic analysis on 

Gelfand pairs. For any probability measure #, S(#) denotes the support of #, and 

for any compact subgroup M of G, a) M denotes the normalized Haar measure on 

M. 
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Examples: 
(1) For any locally compact abelian group G and any compact subgroup K of 

G, (G, K)  is Gelfand. 

(2) The semigroup of probability measures on a real reductive group G that 

are K-biinvariant for a maximal compact subgroup K of G is commutative 

and hence the pair (G, K) is a Gelfand pair (see [R]). 

(3) The semigroup of probability measures on the Euclidean motion group 

G that are SO(n)-biinvariant is commutative and hence (G, SO(n)) is a 

Gelfand pair. 

PROPOSITION 2.1: Let G be a locally compact second countable group and K 

be a compact subgroup of G. Then the following are equivalent: 
1. (G, K) is a Gelfand pair; 
2. for any x, y E G, K x K y K  = K y K x K ;  
3. for any x, y E G, xy E K y K x K ;  
4. the algebra L1K(G) of K-biinvariant integrable functions on G is a 

commutative algebra. 

Proof One may prove that (1) implies (2) by considering the K-biinvariant 

measures WK~xWK and WK~yWK for x, y E G, and that (2) implies (3) is obvious. 

We now prove (3) implies (4). We first prove that (3) implies G is unimodular. 

Let m be a left invariant Haar measure on G. Let U be a compact neighbourhood 

of e such that K U K  = U. Then for g E G, 

m(Ug) = f Xu(xg)dx 

/ X E ( g k x ) d x  (k depends on x) 

/ Xv(x)dx (ydx = dx, y E G and K U K  =- U) 

= r e ( u ) .  

This proves that G is unimodular. The rest of the proof of (3) implies (4) is quite 

similar to Theorem 1.12 of [BJR]. 

The implication (4) implies (1) follows from the existence of an approximate 

identity sequence in L1K(G) (see Lemma 1.6.8 of [GV] or Theorem 2.2.28 of of 

[BH]). l 

Thus, the above result says that our definition of Gelfand pair agrees with the 

classical notion of Gelfand pair. We now prove that the Gelfand pair property 

preserves quotients. 
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PROPOSITION 2.2: Let (G, K)  be a Gelfand pair and H be a normal subgroup 

of G. Let M = K H / K .  Then ( G / H , M )  is also a Gelfand pair. 

Proo~ Let x ,y  E G. Since ( G , K )  is a Gelfand pair, by Proposition 2.1, 

xy E K y K x K ;  that  is, there exist kl, k2 and k3 such that  xy = klyk2xk3. This 

implies that  x H y H  E k l H y H k 2 H x H k 3 H .  Again by Proposition 2.1, (G/H,  M)  

is also a Gelfand pair. I 

In this article we a t tempt  to prove all three theorems of Khinchin for Gelfand 

pairs. This is achieved by applying the Hungarian semigroup theory; see [R] and 

[RS] for more details on Khinchin's Theorems and Hungarian semigroups. 

Let S be a commutat ive Hausdorff semigroup with identity e. Let ~ be a 

relation defined on S for x, y E S, by 

x ~ y C ~ x = r y  and y = s x  

for some r, s E S. Any two elements x and y of S are said to be a s s o c i a t e s  if 

x ~ y. An element u of S is called a un i t  of S if it is invertible in S. Let S* 

be the quotient semigroup corresponding to the relation ~ and r S --+ S* the 

canonical quotient map (this notation is followed throughout the article). We 

say that  the semigroup S is H u n g a r i a n  if it satisfies the following properties: 

(H-l) the set of associate pairs is a closed subset of S • S; 

(H-2) if x and y are associates, then x = uy for some unit u in S; 

(H-3) the set of divisors (factors) of any element in S* is compact.  

For any two subsets A and B of S and any s, t E S, let us write At ~ sB if, 

for a n y a  E A, there exists a b e  B such that  a =  sband b-~ ta. A Hungarian 

semigroup S is called u n i f o r m l y  H u n g a r i a n  if, for any s, t E S and subsets A 

and B of S such that  As ~ tB, there exist units u and v in S such that  A~ ~ vB. 

The notion of uniformly Hungarian semigroup was introduced by A. Zempl~ni in 

[Ze] to study the heredity of Hun and Hungarian semigroups. 

A sequence (xn) in a topological space X is said to be r e l a t i v e l y  c o m p a c t  

or b o u n d e d  if it is contained in a compact subset of X.  

We first prove following elementary results that  are needed in proving the 

main results. The first of such results characterizes all units in the semigroup of 

probability measures on Gelfand pairs. 

PROPOSITION 2.3: Let G be a locally compact group and K be a compact sub- 

group of G. Suppose fl and # are K-biinvariant probability measures on G such 

that #A = A# -- WK. Then A -- XWK for some x in N ( K ) ,  the normalizer of 

K.  Suppose (G, K)  is a Gelfand pair and S is the semigroup of K-biinvariant 
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probability measures on G. Then A is a unit in S if  and only ira = x ~ 3  K for some 

x E N ( K ) .  

Proo~ Let A and # be K-biinvariant probability measures on G such that  

A * # = W K  = # * A .  

This implies that  

s (A)s ( , )  u s ( , ) s (A)  c K 

and hence, for any g E S(#), Ag is a left K-invariant probability measure sup- 

ported on K.  Thus, Ag = WK. Since S(A) C Kg -1, we have wKx = wKg -1 for 

all x E S(A). Thus, 

A ~ ~ ) K X  

for any x E S(A). Similarly, we may prove that  

,~ = X W  K 

for all x E S(A). This implies that  

X • K  x - 1  = 02 K 

and hence x E N ( K ) .  The second part  of the proposition follows from the fact 

that  any measure of the form xwg,  for x E N ( K ) ,  is K-biinvariant and x - lWK 

is the inverse of XO2K. I 

The following lemma is very useful and used often in the sequel without even 

referring to it. 

LEMMA 2.1: Let G be a locally compact group and K be a compact subgroup of  

G. Suppose (G, K)  is a Gelfand pair. Then any compact subgroup M containing 

K is normalized by N ( K ) ,  the normalizer of K,  and (G, M) is also a Gelfand 

pair. 

Proof" Let x E N ( K ) .  Then XWK and ~dK x-1  are K-biinvariant probability 

measures. Since (G, K)  is a Gelfand pair, this implies that  

0 2 x M x _ l  ~-- X O ) K ~ M O 3 K  x - 1  ~_ bGMX~dK x - 1  ~_- 02M02 K ~ 03 M .  

Thus, x M x  -1 = M. The second part  of the theorem follows from the fact that  

M-biinvariant probability measures are also K-biinvariant. I 

The next lemma determines when the semigroup of probability measures on a 

Gelfand pair satisfies (H-2). 
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LEMMA 2.2: Let G be a locally compact group and K be a compact subgroup 

of  G. Let S be the semigroup of all K-biinvariant probability measures on G. 

Suppose (G, K)  is a Gelfand pair. For any subgroup H of G, N ( H )  denotes the 

normalizer of H in G. Then the following are equivalent: 

1. (H-2) holds for S; 

2. for every compact subgroup M of  G containing K and x E G such that 

x K x  -1 C M,  we have x E N ( K ) M ;  

3. for every compact subgroup M of G containing K ,  N ( M )  = N ( K ) M .  

Proof: Suppose S satisfies (H-2). Let M be a compact subgroup of G containing 

K.  Suppose x C G is such that  

(i) K and x K x  -1 C M. 

Consider 

(ii) ,k = WM and # = 02K(~x - lO . )  M .  

Then A and # are in S. Let 

u~ = WKSx-,WK and v2 ~- ~JK(~x~2K. 

Then ul, u2 E S and, by (i), we get that  

~t ~ O g K ( ~ x - l ~ d  M z O j K ( ~ x _ I O J K O j  M ~ V l . ~  

and 

)~ --~ tZ M ~ CdKOj M -~ O j K ( ~ x ~ d K ~ x _ l t Z M  ~- 1]2]2. 

Thus, ,k and p are associates. Then A = up for some unit u in S. By Proposition 

2.3, 

= up = gwK# = g# 

for some g C N ( K ) .  Thus, by substituting (ii), we have 

~ J K ( ~ x - 1 0 2  M ~ g U  M 

and hence K x - I M  = g M  for some g C N ( K ) .  This implies that  x -1 E g M  C 

N ( K ) M .  This proves that  (1) implies (2). 

Suppose (2) holds. Let M be a compact subgroup of G containing K.  Then 

x K x  - l  C x M x  -1 = M 
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for all x E N ( M )  and hence by assumption x E N ( K ) M  for all x E N ( M ) .  This 

implies that N ( M )  C N ( K ) M .  Since K C M,  N ( K )  normalizes M, that is, 

N ( K )  C N ( M ) .  Thus, N ( M )  = N ( K ) M .  This proves that (2) implies (3). 

Suppose for every compact subgroup M of G containing K,  we have N ( M )  = 

N ( K ) M .  We now prove that S satisfies (H-2). Let #, A, ux and u2 be in S. 

Suppose 

p a v i a  and A = v 2 # .  

Then 

# =- vlu2# 

and hence, by Theorem 1.2.7 of [He], S(Ul)S(u2) c {g E G ]9# = P = #9} = M,  

say. Since # is K-biinvariant, K c M. Replacing ui by tOM * ui, for i = 1, 2, if 

necessary we may assume that u~, tOM = ui, for i = 1, 2. Then we have 

Vl/J 2 ~--- tO M = /]2/] 1 . 

By Proposition 2.3, ui = XiWM for some xi E N ( M )  for i --= 1, 2. This implies 

that x~ E N ( K ) M  = M N ( K )  for i = 1, 2. This implies that ui = gitOM for some 

g~ E N ( K )  for i = 1, 2. Thus, # = 91A for gl E N ( K ) .  This proves that (3) 

implies (1). | 

We say that a pair (G, K) consisting of a locally compact group G and a 

compact subgroup K of G satisfies c o n d i t i o n  (*) if (2) or (3) of Lemma 2.2 

is satisfied. Thus, a Gelfand pair (G, K) satisfies condition (*) if and only if the 

semigroup of K-biinvariant probability measures on G satisfies (H-2). We will 

see that  this condition plays a vital role in proving Khinchin's Theorems. 

It is easy to see that when K is a maximal compact subgroup, condition (*) 

is satisfied. It is also easy to see that (G, K) satisfies condition (*) when G is 

a connected Lie group and K is a maximal torus which may be seen as follows: 

suppose M is a compact group containing K; then for x E N(M) ,  x K x  -1 = 

m K m  - I  for some m E M and hence N ( M )  = N ( K ) M .  Also, if there exists a 

compact group L contained in K such that (G, L) satisfies condition (*), then 

(G, K)  also satisfies condition (*) which follows from the equation 

N ( M )  = N ( L ) M  = N ( L ) K M  = N ( K ) M  

for any compact subgroup M containing K.  

We now prove that the Gelfand pair (G, K) satisfies condition (*) when G / K  

is a compact Riemannian symmetric space. We first observe the following: 
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PROPOSITION 2.4: Let G / K  be an irreducible Riemannian symmetric space. 

Then K is a maximal proper compact connected subgroup of G. 

Proob Let H be a compact connected subgroup of G containing K properly. 

Let ~, K and ~ / b e  the Lie algebras of G, K and H respectively, with G = tCGP.  

Since G / K  is irreducible, Ad (K) acts irreducibly on the subspace P where Ad 

is the adjoint representation of G on its Lie algebra ~. Since H contains K,  the 

subspace 7-/N P is a Ad (K)-invariant subspaee of P and hence ?-/N P = (0) or 

P. This implies that  H = K or H = G. This proves the proposition. | 

PROPOSITION 2.3: Let G / K  be a compact Riemannian symmetric space. Then 

the Gelfand pair (G, K) satisfies condition (*). 

Proof'. Let (G, K)  be a compact Riemannian symmetric pair. Let 0 be the 

simply connected covering of G and p: 0 -+ G be the covering map of G. L e t / (  = 

p-1 (K). Let M be a compact subgroup of G containing K such that  xKx-1  C M 

for some x E G. We now claim that  x E N ( K ) M .  Let 0 1 , 0 2 , . . . ,  Gm be a finite 

set of simple Lie subgroups of G1 such that  

C = 0 ~  x 0~ •  x 0, , .  

Now for each i, 1 < i < m, there exists a compact subgroup/~i  of 0 such that  

Oi/[~i is a irreducible Riemannian symmetric space and 

R = R, x R2 x . . -  x Rm. 

Now le t / !7 /=  p - l ( M ) .  Then by Proposition 2.4, we have 

MO = R1 x - . -  x Rr • 0r+l x . . .  x 0r 

for some r, 0 _< r _< m where /~/0 is the connected component of identity in 

M. Now let y = (xl,x2 . . . .  ,xm) be in p-l (x) .  Since/~" is connected, we have 

that  yKy -1 and R are contained in ~I  ~ This implies that  xi~[ix~ 1 C [~i for 

1 < i < r and hence, since/~" is a connected Lie group, we have xi E N(/7/i) for 

1 < i < r. This implies that  y E N(/~')AT/and hence p-~(x) C N ( K ) M .  Thus, 

x C p ( N ( K ) M )  = p(N(r~'))M C N ( K ) M .  This proves condition (*) for any 

compact Riemannian symmetric space. | 

Remark: The following gives an example of a Gelfand pair which does not satisfy 

condition (*). Let Q2 be tile additive group of 2-adic integers and [-[  be the 
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2-adic norm on Q2. Let L = {x E Q2 I Ixl = 1}. Let K be the subgroup of 

automorphisms generated by the automorphism x ~-~ - x .  Let G be the semidirect 

product of K and Q2. Let xo C Q2 be such that x0 r L but 2x0 E L. Then 

the semigroup of all K-biinvariant probability measures on G is isomorphic to 

the semigroup of all symmetric probability measures on Q2. Thus, (G, K)  is a 

Gelfand pair. Let M be the compact subgroup of G generated by L and K. 

Then, since 2x0 C L, it is easy to see that x0 normalizes M. Since N(K) = K 
and x0 ~ M, we get that N ( K ) M  = M is a proper subgroup of N(M). Thus, 

(G, K)  is a Gelfand pair which does not satisfy condition (*). 

We now present various types of Hungarian semigroups which are useful in 

proving the heredity of Hungarian semigroups and limit theorems. For any subset 

C of a semigroup P,  let Tc be the set of all factors of elements of C. Let 

r S --+ S* denote the canonical quotient map. A Hungarian semigroup S is 

called s t ab l e  if, for every compact set C of S*, Tc is compact. A Hungarian 

semigroup S is called d iv is ion  c o m p a c t  if, for any two compact subsets C and 

L o f S ,  the set C/L = {s E S I there e x i s t s a l  e L, sl E C} is compact. It is 

shown in [RS] that the semigroup of all compact-regular probability measures on 

an abelian Hausdorff topological group G is a stable division compact Hungarian 

semigroup (see Chapter 3, Theorem 1.1 of [RS]). 

A Hungarian semigroup S is called s t r o n g l y  s t ab le  if, for any compact set 

C of S, there is a compact set L of S such that r  = r It should be 

noted that strongly stable Hungarian semigroups are stable. A. Zempl@ni intro- 

duced the notion of strongly stable Hungarian semigroups in [Ze]. It is shown 

in [Ze] that for a locally compact first countable abelian group G, the semigroup 

P(P( . . .  (G) . . . ) )  is a strongly stable division compact uniformly Hungarian semi- 

group with the Prohorov property. In [R], it is proved that P ( P ( . . .  (S ) . . . ) )  is a 

strongly stable division compact uniformly Hungarian semigroup with the Pro- 

horov property when S is the semigroup of K-biinvariant probability measures 

on noncompact real reductive symmetric space. Here we prove a similar result 

for certain Gelfand pairs. 

In order to achieve Khinchin's second and third theorems, that is, any anti- 

indecomposable measure or any infinitesimal limit is infinitely divisible, Ruzsa 

and Szekely introduced the concept of normable Hungarian semigroups. For 

any s in a Hungarian semigroup S, define H(s) as the maximal idempotent 

factor of s in S (see 22.11 of [RS] for the existence of H(s)). A n o r m a b l e  

H u n g a r i a n  s e m i g r o u p  is a Hungarian semigroup S satisfying the condition 

that  for every s E S that is not an associate of an idempotent, there exists a map 
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As: T~ --+ [0, oc) such that  

(p) As(ab) = A~(a) + A~(b) 

for any a, b C T~ with ab E T~, A~(s) > 0 and A is continuous at H(s)  where T~ 

is the set of factors of s. Any map satisfying condition (p) is called a p a r t i a l  ho-  

m o m o r p h i s m .  It is proved [RS] that  the semigroup of probability measures on 

a locally compact abelian group is a normable Hungarian semigroup. Combining 

the Kendall homomorphism of [G3] with the results in JR], we get that the semi- 

group of probability measures on a noncompact reductive symmetric space is a 

normabte Hungarian semigroup. In the next sections we prove that  the semigroup 

of K-biinvariant probability measures on Gelfand pairs is also normable. 

Another application of the normable stable Hungarian semigroup is the infinite 

divisibility of an infinitesimal limit, that  is, Khinchin's third theorem. We will 

answer this question affirmatively in section 8. 

3. F a c t o r  c o m p a c t n e s s  

The following lemma is an important tool in proving the factor compactness 

which is useful in establishing the strong stability and limit theorems; see [DM], 

[DR] and [Mc] for results on factor compactness for measures on general locally 

compact groups. 

LEMMA 3.1: Let N be a connected nilpotent Lie group and A be a group acting 

on N by automorphisms such that the induced action on the Lie algebra of  N is 

semisimple. Let X be a subset of  N such that for any sequence (xn) in X ,  the 

sequence 

(XnOL(X'~ I ) ) 

iS relatively compact for every (~ C A. Then for each x E X ,  there exists ax and 

bx such that 

x = bxax, 

{bx}xex  is relatively compact and a(ax) = a~ for all x E X and a C A. In 

other words, X is relatively compact in N / N  A where N A denotes the group of  

a11 A-fixed points in N.  

Proof: Let L ( N )  be the Lie algebra of N. We first consider the case when N is 

abelian. There is no loss of generality in assuming that N is a vector group. Let 

U be the subspace of L ( N )  consisting of all v E L ( N )  such that 

d (v) = v 
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for all a E A. Then there exists an A-invariant subspace W of L(N) such that 

L(N) = U + W. 

Now for each x E X, there are ax and bx in the exponential image of U and W, 

respectively, such that 

x = bxax. 

Suppose (bx } : ex  is not relatively compact; then there exists a sequence (xn) 

in X such that 

bn = bx,~ ~ cx:). 

Let Yn E W be such that 

exp(Yn) = bn. 

Since exp is a diffeomorphism, we have 

Y~ --+ cc 

and (da(Yn) - Yn) is relatively compact for all a E A and hence 

Y~ Yn 
da(  [-~.]~ ) +0 

ItYnll 

for all a E A, where II" II is the Euclidean norm on L(N).  By passing to a 

subsequence, if necessary we may assume that 

Yn 
- -  - +  Y 

IIYnll 

and hence Y is a nonzero vector in W such that 

da(Y) = Y 

for all a E A. This is a contradiction. This proves that {bx}x~x is relatively 

compact. 

We now consider the general case. The rest of the proof is based on induction 

on the dimension of L(N).  Suppose the dimension of L(N) is one; the result 

follows from the abelian case. Now let Z be the center of N and L(Z) be the 

Lie algebra of Z. Since the action of A on L(N) is semisimple, there exists an 

A-invariant subspace W of L(N) such that 

L(N) = L(Z) | W. 
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Since N is nilpotent, Z(N)  is of positive dimension. Now applying the induction 

hypothesis to N / Z ( N )  yields that, for each x E X, there are a , ,  bx and zx such 

that 

x = bxaxzx, 

where a~Z is fixed by all elements of A, z~ is in Z for all x and {b~},ex is a 

relatively compact subset of N. Let exp be the exponential map of L(N)  into 

N. Since N is a connected nilpotent Lie group, by Theorem 3.6.1 of IV], exp is 

an onto map. Since L(N) = L(Z) + W, for each x E X, there exists a vx E L(Z) 

and w~ E W such that 

exp(v~ + wx) = ax 

and hence, since v~ belongs to the center of the Lie algebra, by Corollary 2.13.3 

of [V], we have 

exp(wx)exp(v~) = ax 

for all x E X. Thus, for each x E X, replacing ax by a~exp(-vx), we may assume 

that 

ax E exp(W) 

for all x E X. 

We now claim that a~ is fixed by all elements of A. Let w, E W be such that 

exp(w~) = ax. Since a~Z is fixed by elements of A, we have 

a(expq(Wx + L(Z))  = expq(w~ + L(Z))  

for all a E A, where expa denotes the exponential map of the Lie group N/Z.  
Since N is a connected nilpotent Lie group, expq is a diffeomorphism of the Lie 

algebra L ( N ) / L ( Z )  onto N / Z  (see Theorem 3.6.2 of [V]). This implies that 

for all a E A and hence 

c~(wx + L(Z))  : wx + L(Z) 

- E L ( Z )  

for all a E A. Since Wx E W, which is an A-invariant subspace, we have 

a(w~) - Wx E W ~ L(Z) = (0) 

for all a E A. This implies that a(wx) = w~ for all a E A and hence 

 (ax) ---- ax 

for all a E A and all x E X. 
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Now for any sequence (zx.) ,  and for each a E A, 

l) = = z x o  

This implies that (z~. a(zT. 1)) is relatively compact. Now the result follows from 

the abelian case. I 

LEMMA 3.2: Let U be a unipotent algebraic group and K be a compact group 

of automorphisms on U. Let X be a subset of  U such that for any sequence (xn) 

in X ,  the sequence (xna(Xnl))  is relatively compact. Then X U  K is relatively 

compact in U /U  g where U g is the group of  all K-f ixed points of  U. 

Proof: Since U is a unipotent algebraic group, exponential is a diffeomorphism 

of the Lie algebra of U onto U. Since K is compact, the induced action of K on 

the Lie algebra of U is semisimple. Thus, one may prove the lemma by arguing 

as in Lemma 3.1. I 

The next result extends Lemma 3.1 to connected solvable groups with a faithful 

representation and when the group of automorphisms is a compact connected 

group. 

LEMMA 3.3: Let G be a connected solvable Lie group with a faithful representa- 

tion and K be a compact connected group of automorphisms of  G. Suppose X is 

a subset of  G such that, for every sequence (xn) in X ,  the sequence (Xna(Xn) -1) 

is relatively compact for all a E K.  Then for each x E X ,  there exist (bx) and 

(ax) in G such that 

x = bxax, 

{br [ x E X }  is relatively compact and &(ax) = a,  for all a E K and all x E X .  

Proof: Let G be a connected solvable Lie group with a faithful representation. 

Then there exists a compact connected abelian subgroup T of G and a simply 

connected normal subgroup H of G such that G = T H  (see [Ho]). Let N be the 

nilradical of H and 3 / b e  the Lie algebra of H. Let 3ll be the Lie subalgebra of 

H such that 

3/1 = {v E 3/I c~(v) = v, for all c~ E K}. 

Let H1 be the connected Lie subgroup of G corresponding to the subalgebra 3/1. 

Then Ht  is a simply connected closed subgroup of H (see Theorem 3.18.12 of 

[V]) and a(h) = h for all h E H1 and all c~ E K.  By Leptin's Theorem (see 

[BJR]), H = NH1.  Now the lemma follows from Lemma 3.1. I 
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We need the following lemmas which are quite useful in establishing the main 

result of this section. 

LEMMA 3.4: Let G be a locally compact second countable group and K be a 

compact subgroup of G. Let (Tn) be a sequence of automorphisms of G. Suppose 

(vn(WK)) is a relatively compact sequence in 7~(G). Then (vT~(k)) is a relatively 

compact sequence in G, for all k �9 K.  

Proof: Suppose ('rn(ko)) is not relatively compact for some k0 E K.  Then 

by passing to a subsequence, if necessary we may assume that  (wn(k0)) has no 

convergent subsequence and Tn(WK) -+ p E P(G) .  Since each of rn(wK) is an 

idempotent,  p is an idempotent and hence p -- WM for some compact subgroup 

M of G (see Theorem 1.2.10 of [He]). Since G is second countable, T'(G) is 

metrizable. Let (Ui) be a decreasing sequence of compact neighbourhoods of M. 

Since Vn(WK) -~ WM, for each i _> 1, there exists an ni such that  

1 
COK(v~l(ui)) > 1 -- 2- 7 

(see [P]) and we may assume that  ni < ni+l for all i _> 1. Let 

B = A �9 
rn=l  i = m  

Then B is a Borel subset of G and 

oo 1 

i = m  

for all m > 1. This implies that  cog(B) -- 1. Let b E B. Then there exists an 

m > 1 such that  Tni(b) E Ui for all i _> m. Since (Ui) is a decreasing sequence, 

we have Vni (b) E Um for all i > m and hence (T~ (b)) is relatively compact for all 

b C B. Let H be the set of all k in K such that  (~-~ (k)) is relatively compact.  

Then H is a co-null subgroup of K.  By Proposition B.1 of [Zi], H = K.  This 

implies that  (vn(ko)) has a convergent subsequence. This is a contradiction. 

Thus, we prove the lemma. I 

We make the following observation which is essentially Lemma 2.1 of [DR]. 

LEMMA 3.5: Let V be a finite-dimensional algebra over a real or p-adic field. 

Let (rn) be a sequence of algebra automorphisms of V. Then there exists a 

subalgebra W of V such that 

1. W = {w �9 V l(r~(w)) is bounded} and 
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2. if (T~(p)) is relatively compact for # E 7)(V), then # is supported on W. 

Proof: Since V is of finite dimension, there exists a vector subspace W of V 

such that  (Vn(W)) is bounded if and only if w E W. Now let # E P(V)  be 

such that  (rn(#)) is relatively compact. We now claim that the support of # is 

contained in W; in other words, for each v E S(p), (7n(V)) is a bounded sequence. 

Suppose, for some v E V, the sequence (7n(V)) is not bounded. Then there exists 

a subsequence (~-k~) of (Tn) such that 

Tkn (V) --+ CO and rk~ (#) --+ v 

for some v E P(V) .  Then by Lemma 2.1 of [DR], there exists a subspace W0 of 

V such that (vk~ (w)) converges for all w E Wo and # is supported on Wo. This 

implies, in particular, that (Tk~ (V)) converges. This is a contradiction. Thus, 

v E W. This proves the lemma. I 

PROPOSITION 3.1: Let G be an a/most connected Lie group and G O be a semi- 

simple Lie group. Let K be a compact subgroup of G. Suppose (G, K)  is a 

Gelfand pair and S is the semigroup of all K-biinvariant probability measures on 

G. Let (#n) be a relatively compact sequence in S and (An) be a sequence such 

that, for each n >_ 1, An is a factor of #n. Then there exists a sequence (x~) from 

the center of G such that (xnA,) is relatively compact. 

Proof: Since (~tn) is relatively compact, by Theorem 1.2.21 of [He] there exists a 

sequence (gn) in G such that  (gnAn) is relatively compact. Let Ad be the adjoint 

representation of G and let H = Ad(G). Then H is an algebraic semisimple 

group. Thus, the center of H is finite and H ~- G/Z  where Z is the center of 

G. By Proposition 2.2, we have (H, K Z / Z )  is also a Gelfand pair. Let M be a 

maximal compact subgroup of H containing K Z / Z .  Then (H, M) is a Gelfand 

pair. Let p: G -+ H be the canonical quotient map. Then (p(#n) �9 WM) is 

relatively compact and p(A~) * WM is a factor of p(#~) * 02M for all n >_ 1. Then 

there exists a sequence (hn) in H such that (hnWM * p(An)) and (p(An) * wuhn)  

are relatively compact (see [DM]). This implies, by Theorem 1.2.21 of [He], that 

(hnWMhn 1) and (hnlwMhn) are relatively compact. By Cartan decoraposition 

(see [W]), H = M A M  for an abelian group A and hence, for each n _> 1, there 
] exist an E A and mn,m,~ E M such that hn = rename. This implies that  

(anWMan 1) and (a~lwua~) are relatively compact. By Lemma 3.4, (anka~ 1) 

and (a~lkan) are relatively compact for all k E M. Let p: H -+ GL(V) be 

a faithful rational representation of H and W be the subalgebra of End (V) 
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generated by H. For each n > 1, define ~-~: W --+ W by Tn(W) = a~wa~ 1. 

Then by Lemma 3.5, there exists a subalgebra W0 of W such that  (rn(W)) is 

relatively compact if and only if w E 14/o. Since A is abelian and (a~ka~ 1) is 

relatively compact for all k C M, we have M A c  Wo. Since H = M A M ,  we have 

H C Wo. Since H generates W, W -- Wo and hence (Vn) is relatively compact 

in End (W). Since (anlkan) is relatively compact, we may prove in a similar 

manner that (Vn 1) is relatively compact in End (W). Thus, (7~) is relatively 

compact. Since H is a semisimple algebraic group, the center of H is finite. This 

implies that  (an) is relatively compact in H. This proves that  (hn) is relatively 

compact and hence (WM * p(An)) is relatively compact. By Theorem 1.2.21 of 

[He], (p(An)) is relatively compact. Since (gn)~n) is relatively compact, once again 

by Theorem 1.2.21 of [He], (p(gn)) is relatively compact. Thus, there exists a 

relatively compact sequence (bn) in G and a sequence (xn) from Z such that  

9~ = bnxn for all n _> 1. Since (gnAn) is relatively compact, (x~A~) is relatively 

compact. II 

We now prove the factor compactness for connected Gelfand pairs when K is 

a maximal compact group. 

PROPOSITION 3.2: Let G be a connected locally compact group and K be a 

maximal compact subgroup of G. Suppose (G, K) is a Gelfand pair and S is the 

semigroup of K-biinvariant probability measures on G. Let (#n) be a relatively 

compact sequence in S and (An) be a sequence in S such that, for each n >_ 1, 

)~n is a factor of Pn. Then there exists a sequence (xn) in G such that (x~An) 

is relatively compact and the sequence (Xn) is relatively compact in G / N (K ) ,  
where N(K)  is the normalizer of K in G. 

Proof: Since G is a connected group, there exists a compact normal subgroup 

M of G such that  G/M is a connected Lie group. Since K is a maximal compact 

subgroup, M is contained in K. Thus, by replacing G by G/M, we may assume 

that G is a connected Lie group. 

Let (#n) be a sequence of K-biinvariant probability measures on G and (An) 

be a sequence in S such that,  for each n _> 1, /~n is a factor of #n. Let R 

be the solvable radical of G. Then G/R  is a connected semisimple Lie group. 

Then there exists a sequence (xn) in G such that (Xn)~n) is relatively compact 

and, by Proposition 3.1, (xn) is relatively compact in (G/R) /Z(G/R) .  This 

implies that there exists a sequence (gn) in G such that xn = qngn for all n _> 1, 

gnR E Z(G/R)  and (qn) is relatively compact. This implies that (g~)~n) is 

relatively compact and gngg~lg-1 E R for all g E G and all n >_ 1. Since "~n 
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is K-biinvariant,  we have that  (gnWKgnlgn.~n) is relatively compact and hence, 

by Theorem 1.2.21 of [He], (gnWKgn 1) is relatively compact. By Lemma 3.4, we 

have (gnkg~ 1) is relatively compact for all k E K.  Thus, (gnAn) and for k E K,  

(gnkg~ 1) are relatively compact. Let H = Ad(G). Then H is a connected Lie 

group with a finite-dimensional faithful representation. Let S be the solvable 

radical of H.  Then S contains Ad (R). Let hn = Ad(gn). Then h,~hh~lh -1 E S 
for all h E H.  This implies that  (hnS) is contained in the center of H/S  which 

is a semisimpte algebraic group and hence (h~S) is relatively compact. There 

exists a relatively compact sequence (Cn) in H such that  h~ -- enYn and for some 

Yn E S for all n _> 1. Since (Cn) is relatively compact, we have ynkYn 1 is relatively 

compact  for all k E Ad(K). This implies that  the sequence (ynky~lk -1) in S 

is relatively compact in S for all k E Ad(K). Now by Lemma 3.3, there exists 

a relatively compact sequence (bn) in S and a sequence (an) in S such that  

Yn =bnan and kank -1 : an for all k E Ad(K) and all n _> 1. Thus, h~ = cnbnan 
where (cnbn) is relatively compact and kank -1 = an for all k E Ad(K) and all 

n ~ 1. This implies that  there exists a relatively compact sequence (dn) in G 

and a sequence (un) in G such tha t  

Xn = dnun and kunk-lu~ 1E Z 

for all n _> 1 and all k E / (  where Z is the center of G. Now for each n >_ 1, the 

map k ~4 ku,~k-lu-~ 1 is a continuous homomorphism of K into Z. Since K is a 

maximal compact subgroup, we get that  kunk-lun 1 E K and hence un E N(K) 
for all n > 1. Thus, (xn) is relatively compact in GIN(K).  | 

We now prove the factor compactness result for certain almost connected 

Gelfand pairs. To do this we need the following results on the structure of Gelfand 

pairs. The following proves that  Gelfand pair is invariant under conjugation. 

PROPOSITION 3.3: Let (G, K) be a Gelfand pair and r be an automorphism of 

G. Then (G, "r(K)) is also a Gelfand pair. | 

Proof: Let A and # be v(K)-biinvariant  probability measures. Define A' = 

r - l ( A )  and It' = T- ' ( I t ) .  Then 

wn,Vwn = wKr - l (A)wn  = r-l(Wr(g),~Wr(K)) = A'. 

This shows that  A' and g '  are K-biinvariant probability measures on G. Since 

(G, K)  is a Gelfand pair, we have 
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This proves that  (G, r (K) )  is also a Gelfand pair. | 

PROPOSITION 3.4: Let G be an almost connected Lie group and (G ,K)  be a 

Gelfand pair. Let G O be the connected component of identity in G and Ad be 

the adjoint representation of G on its Lie algebra. Suppose Ad(G ~ is an almost 

algebraic group. Let S be the solvable radical of Ad(G~ Then S is type R, that 

is, S is a compact extension of a connected nilpotent normal subgroup of Ad(G). 

Proof: Since S is a solvable almost algebraic group, there exists a compact 

abelian subgroup T and a diagonalizable almost algebraic group D such that  

S = T D U  where U is the unipotent radical of Ad(G). To prove the lemma it 

is enough to prove that  D centralizes U. Now let u E U and (dn) is a sequence 

in D such that  dnudn 1 --+ e. Let M be a maximal compact subgroup of Ad (G) 

containing T. Since Ad (K) is contained in a conjugate of M, by Proposition 

3.3, we get that  (Ad(G), M) is also a Gelfand pair. Now for each n >_ 1, dnu = 

' " ' and " in M. This implies that  CnUCndnc n for some en,  C n C n 

dn ud~ l"ancn''- l " -  n = cn uc~ 

for all n > 1. Since (Cn) and (c~) are relatively compact,  by passing to a subse- 
t C t quence, we may assume that  cn --+ c, % --+ and dnud~ ~ --~ e. This implies that  

d ~ , , - l z - i  ~ cud. Let R be the reductive Levi subgroup of Ad (G ~ containing n Cn t~n 

M ~ Then it is easy to see that  R contains D and hence u E R M .  Since R M  is 

a finite extension of a reductive group, it does not contain any unipotent normal 

subgroup but U N R M  is a unipotent normal subgroup of R M  and hence u = e. 

Thus, D centralizes U. This proves the proposition. | 

We now prove the factor compactness. 

PROPOSITION 3.5: Let G be an almost connected group and K be a maximal 

compact subgroup of G. Suppose (G, K)  is a Gelfand pair  and there exists a 

compact normal subgroup M of G such that G / M  is a Lie group and Ad(G/M) 

is an almost algebraic group. Let S be the semigroup of K-biinvariant probability 

measures on G. Let (#n) be a relatively compact sequence in S and (An) be a 

sequence such that, for each n > 1, )~n is a factor Of pn in S. Then there exists 

a sequence (Xn) in N ( K )  such that (XnAn) is relatively compact. 

Proof: Since K is a maximal  compact  subgroup of G, M is contained in K.  

Since the considered measures are all K-biinvariant, we may assume that  G is 

a Lie group. Let R be the solvable radical of G ~ the connected component 
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of identity in G. Then R is normal in G and G / R  is a finite extension of a 

connected semisimple Lie group. Let p: G -+ G / R  be the canonical quotient 

map. Since P(,~n) is a factor ofp(pn)  for all n _> 1 and (#n) is relatively compact, 

by Proposition 3.1, there exists a sequence (x~) in G such that (Xn,~n) is relatively 
compact and -1 -1 XngX n g E R for all g E G. Since G is almost connected, we 

may assume that  xn E G o for all n > 1. Since "~n is K-biinvariant, we have 

that  (XnOJgXnlXn,~n) i8 relatively compact and hence, by Theorem 1.2.21 of [He], 

(xnwKx~ 1) is relatively compact. By Lemma 3.4, (xnkxn 1) is relatively compact. 

Let r G ~ G / Z  ~- Ad(G) be the natural map and S be the solvable radical 

of Ad(G~ Then for g~ - r  for all n > 1, we have gnXgnlX -1 C Ad(R) 

for all n > 1 and (g,~kg~ 1) is relatively compact. Since center of Ad(G~ is 

finite, there exists a relatively compact sequence (dn) and a sequence (Yn) in 

S such that g,~ = dnyn. This implies that (ynky~lk  -1) is relatively compact 

for all k E K.  By Proposition 3.4, S is a compact extension of its nilradical. 

Thus, there exists a sequence un in the nilradical, say N of S such that (ynUn 1) 

is relatively compact and hence (unku~lk  -1) is relatively compact. By Lemma 

3.1, there exists a bounded sequence (bn) and sequence (zn) such that  un = bna~ 

and kank -1 = an for all n _> 1. Thus, there exists a bounded sequence (ca) and 

a sequence (h~) such that 

gn = cnhn and k h n k - l h ~  1 = e 

for all n :> 1 and all k E Ad(K). This implies that  there exists a sequence (zn) in 

G such that (ZnAn) is relatively compact and znkz~ lk  E Z for all n _> 1 where 

Z is the center of G. Since K is a maximal compact subgroup of G, we get that  

ZnKZn 1 C K for all n > 1, since K is a Lie group, znKz~  1 = K for all n > 1. 

Thus, (znAn) is relatively compact and zn E N ( K ) .  II 

4. Khinchin's first theorem for connected Gelfand pairs 

In this section we prove Khinchin's factorization theorem for Gelfand pairs when 

G is a connected locally compact group. We now look at shift compactness in a 

general Hausdorff commutative topological semigroup. Let S be any commuta- 

tive Hausdorff topological semigroup and X C S. Then we say that 

(1) X is weak ly  shift compact if, for every sequence (xi) in X, there is a 

relatively compact sequence (Yi) in S such that x~ is an associate of yi. 

(2) X is s t r o n g l y  shift compact if there exists a compact set Y of S such 

that every element of X is an associate of some element of Y. 
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We now use a version of an argument in Section 3.6 of [RS] to prove the 

following lemma; it proves the converse of Statement 21.8 of Chapter 2 of [RS] 

in the case of the semigroup of probability measures on Gelfand pairs. 

LEMMA 4.1: Let G be a locally compact a-compact group and S be a dosed 

abelian subsemigroup of probability measures on G satisfying (H-2). Suppose 

the group of units in S is exactly equal to {g~l [ g E H} for some subgroup H of 

G where ~ is the identity in S. Then weakly shift compact subsets of S are also 

strongly shift compact. 

Proo~ Let X be a weakly shift compact subset of S. For any # E S and any 

compact subset M of G, let 

C(#; M) = sup #(xM). 
xEH 

We first claim that  for any given 0 < 0 < 1, there exists a compact subset M 

of G such that  C ( # ; M )  > 0 for a l l # E  X. Suppose, for so m e0  < 0 < l a n d  

for each compact subset M of G, there exists tt C X such that  C(#; M) <_ 0. 

Let M1 C M2 C - . .Mn  C . . .  be a sequence of compact sets in G such that  

Mn is contained in the interior of Mn+l and G = [J Mn (this is possible because 

G is locally compact a-compact). Then for each n there exists a #n C X such 

that  C(#n; Mn) _< 0. Since the sequence (#n) is in X, there exists a relatively 

compact sequence (An) in S such that ~n ~ #n. Since S is Hungarian, there 

exists a sequence (xn) in H such that (xnpn) is relatively compact and hence 

there is a compact subset M of G such that  #n(xnlM) ~ 0 for all n. This implies 

that C(#n; M) > 0 for all n. Since M is compact, there exists an Mn such that 

M C Mn and hence C(#n; Mn) > 0. This is a contradiction. Thus, our claim is 

proved. 

Let M be a compact subset of G such that C(#; M) > 1/2 for all # E X. Let 

B = {A C S I r E r  andA(M) > 1/2}. We claim that B is relatively 

compact and r  C r  Let 0 > 1/2. Then there exists a compact set L of G 

such that  C(#; L) > 0 for all # E X. Let A E B. Then ,k(M) > 1/2 and A(uL) > 0 

for some u C H. This implies that u E ML -1 and hence )~(ML-1L) > 0. This 

shows that B is relatively compact. Suppose # E X; then there exists u C H 

such that up(M) > 1/2. This implies that up C B. Thus, r  C r Now 

let Y = B. Then Y is compact and every element of X is an associate of some 

element of Y. Thus, X is strongly shift compact. I 

The following result is a useful lemma to prove (H-3) and strong stability. 
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LEMMA 4.2: Let G be a locally compact second countable a-compact group and 

(G, K) be a Gelfand pair satisfying condition (*). Let S be the semigroup of all 

K-biinvariant probability measures on G. Suppose C is a compact subset of S 

such that Tc is weakly shift compact. Then r  is compact where r S --4 S* 

is the natural map. 

Proof: Let C be a compact subset of S such that Tc is weakly shift compact. Let 

N(H)  denote the normalizer of H for any subgroup H of G. By the hypothesis 

S is a commutative subsemigroup of probability measures on G satisfying (H-2) 

and the group of units in S is N(K)wK. Thus, by Lemma 4.1, Tc is strongly 

shift compact. This implies that r  C r  for some compact subset X of 

S, in particular, r  is relatively compact. 

We now claim that r  is closed. Let (An) be a sequence in Tc and r -4 

s E S*. Since Tc is weakly shift compact and, by passing to a subsequence, we 

may assume that there exists a sequence (Un) in N ( K )  such that unAn -4 A E S. 

Then 

(i) ~b(An) = r --+ r 

and hence r = s. Since Un E N(K) ,  for all n > 1, Un)t n is also in Tc for all 

n _> 1; that  is, there exists ~n E C such that 

(ii) unAn * u,~ =/~,~ 

for all n _> 1 and (u,~) is a sequence in S. By Theorem 1.2.5 of [He], (1/n) is 

relatively compact and hence, since C is compact, by passing to a subsequence, 

we may assume that  #n --4 # E C and un --4 u E S. By (i) and (ii), we get that  

A , l /  = #. This proves that  A E Tc and hence s E r  Thus, r  is a 

closed set. This proves that  for any compact set C, such that  Tc  is weakly shift 

compact, r  is compact in S*. I 

We now prove the main result of this section. 

THEOREM 4.1: Let G be a connected locally compact group and (G ,K )  be a 

Gelfand pair. Let S be the semigroup of all K-biinvariant probability measures 

on G. Suppose the pair (G, K) satisfies condition (*). Then S is a strongly stable 

Hungarian semigroup and hence Khinchin's factorization theorem holds for the 

semigroup S. 

Proof: It is very routine to verify condition (H-l). By Lemma 2.2, (H-2) is 

satisfied if and only if condition (*) is satisfied. We now claim that  for any 
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compact set C, r  is compact. Let N(H)  denote the normalizer of H in G, 

for any closed subgroup H of the group G. Since G is a connected group, there 

exists a compact normal subgroup M of G such that  G / M  is a Lie group. Let 

(~tn) be a sequence in S and (An) be a sequence such that  An is a factor of ~t n 

in S and (#n) is relatively compact.  Let L be a maximal compact subgroup of 

G containing K and M. Then the semigroup $1 of all L-biinvariant probability 

measures on G is a commutative subsemigroup of P(G). Since An is a factor of 

Pn, we have that  An * WL is a factor of Pn * O2L. By Proposition 3.2, there exists 

a sequence (xn) such that  (XnAn * wn) is relatively compact and Xn E N(L)  for 

all n > 1. By Theorem 1.2.15 of [He], (xnAn) is relatively compact.  Now for 

x E N(L) ,  we have x K x  -1 C L. Since (G, K)  satisfies condition (*), we get that  

x E L N ( K ) .  Thus, there exist sequences (bn) and (Un) in G such that  

X n  ~ bn un  , 

where (bn) is relatively compact and un E N ( K )  for all n > 1. This implies that  

(unAn) is relatively compact and Un E N ( K )  for all n. By Proposition 2.3, we 

have A n and U n A  n a re  associates in S for all n. Thus, for any relatively compact 

set Af of S, the set of factor TN of 24" is weakly shift compact. Thus, by Lemma 

4.2, for any compact subset C of S, r  is compact. 

We now verify condition (H-3). Let x E S* a n d / t  E S be such that  r = x. 

Suppose s E S* is a factor of x. Then st = x for some t E S. Let A and v in S be 

such that  r = s and r = t. Then Av = up for some unit u in S. Thus, A 

is a factor of # in S. This implies that  Tx = r and hence, by Lemma 4.2, Tx 

is compact. Thus, (H-3) is verified. Hence S is a Hungarian semigroup. Since G 

is a second countable group, S is metrizable and hence Khinchin's factorization 

theorem holds for S (see [RS]). 

We now prove that  S is strongly stable. Let C be any compact set in S. Then 

by Lemma 4.2, Tc is strongly shift compact and r  is a compact set. Let X 

be a compact set in S such that  

(i) r c r 

Let 

Y = X N ( ~ - l ( ( ~ ( r c ) ) .  

Then Y is a compact subset of S and r C r  Let A E T c .  Then by (i), 

there exists a v E X such that  

r = r 
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and hence v E Y. This proves that r = r Thus, S is a strongly stable 

Hungarian semigroup. | 

We now prove Khinchin's Theorem for certain almost connected Gelfand pairs. 

THEOREM 4.2: Let G be an almost connected second countable group and 

contain a compact normal subgroup M such that G/M is a Lie group and 

Ad(G/M) is an a/most algebraic group. Suppose (G, K) is a Gelfand pair 

satisfying condition (.) and S is the semigroup of K-biinvariant probability 

measures on G. Then S is a strongly stable Hungarian semigroup. Also, S is 

metrizable and the Khinchin's factorization theorem holds for S. 

Proof: The proof of (H-l) is trivial and, since (G, K) satisfies condition (*), 

(H-2) is verified. Now let C be a compact set and Tc be the set of factors of C. 

We now claim that r is compact. Let (#n) be a relatively compact sequence 

and, for each n > 1, /~n is a factor of Pn. Let L be a maximal compact subgroup 

of G containing K and M. Then (#~ �9 a~L) is relatively compact and An * WL is 

a factor of #n * WL. By Proposition 3.2, there exists a sequence (x~) in N(L) 

such that (XnAn * Wn) is relatively compact and hence, by Theorem 1.2.15 of 

[He], (Xn * An) is relatively compact. Since (G, K) satisfies condition (*), we have 

N(L) = LN(K) .  Thus, xnL -~ gnL for some gn C N(K) ,  for all n _> 1. Thus, 

(gnAn) is relatively compact. This proves that Tc is weakly shift compact. By 

Lemma 4.2, r is compact. Now (H-3) and strong stability may be proved 

by arguing as in Theorem 4.1. | 

As an application of strongly stable Hungarian semigroups we obtain the 

following 

COROLLARY 4.1: Let (G,K) be a Gelfand pair and S be the semigroup of 

probability measures on G that are K-biinvariant. Let T = P(P( . . .  (S) . . . ) ) .  

Suppose the pair (G, K) satisfies condition (*) and 

(a) G and K are as in Theorem 4.1 

OR 

(b) 
OR 

(c) 

Then 

1. 

G and K are as in Theorem 4.2 

G is a compact metric group. 

we have the following: 
T is a strongly stable division compact uniformly Hungarian metric 

semigroup with the Prohorov property and consequently Khinchin's 

factorization theorem holds for T; 
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2. the set of  infinitely divisible elements in T is a closed set; 

3. the set o f  indecomposable elements  in T and the set o f  anti- indecomposable 

elements  in T are of  type G~ ( that  is, a countable intersection o f  open sets). 

Proo~ By Theorem 4.1 and Theorem 4.2 we get that  S is a strongly stable 

Hungarian semigroup. The division compactness and the Prohorov property of 

S is a consequence of Theorem 2.1 of Chapter  3 and Theorem 6.7 of Chapter  2 

of [P], 
We now prove that  S is uniformly Hungarian. Let A and B be subsets of S 

and vl and v2 be in S such that  for every A �9 A there exists a # �9 B such that  

= ultt and p = u2A. For any/k �9 S, define 

M ( A )  = {g �9 a l g a  = = 

then by Theorem 1.2.4 of [He], M(A) is a compact group and 

also 

v ,  ~ = ~ = )~ , v r S ( v )  c M ( ~ )  

for any v �9 7~(G) (see Theorem 1.27 of [He]). Let M = N~eA M(A). Then M 

contains K and M ( v i )  for i = 1, 2. Now by replacing vi by vi * 02M for i = 1, 2, 

if necessary we may assume that  M(vi )  = M for i = 1, 2. Now for any A �9 A, 

there exists a # �9 B such that  A = Vl# and # = v2A and hence A = VlV2p. Thus, 

we have 

c 

for all I �9 A. This implies that  S(pl)S(p2) C M. Now arguing as in Lemma 2.1, 

we get that  

Vi : g i W M  

for some gi �9 N ( M )  and for all i = 1, 2. Since M contains K and (G, K)  satisfies 

condition (*), we have gi �9 N ( K ) M .  This implies that  

lY i ~ Xi03 M 

for some xi C N ( K )  and for all i = 1, 2. Thus, since WM is an idempotent factor 

of each element of A, for each element A C A, there exists a tt C B such that  

= x l p  for xl  E N ( K )  and hence p = x~-lA. This proves that  S is a uniformly 

Hungarian semigroup. Thus, we have proved that  S has all the properties in (1). 
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Now by applying Theorem 2 of [Ze], we get that the semigroup T also has all 

these properties and hence the second part of (1) follows from Section 2.23 of 

[RS]. This proves (1) and the results (2) and (3) follow from (1) and Theorem 

26.4 of [RS]. | 

5. Khinchin's  Theorems  for certain Gelfand pairs 

We first prove the analogue of Theorem 4.1 for a class of groups which includes 

discrete groups. 

PROPOSITION 5.1: Let G be a discrete group and (G, K) be a Gelfand pair. Let 

S be the semigroup of all K-biinvariant probability measures on G. Then the 
factor set of a relatively compact set is weakly shift compact. In fact, for every 
sequence (An) in Tc, there exists a sequence (Xn) from Z(K) such that (xnAn) 

is relatively compact, where C is a relatively compact set and Tc is the set of 
factors of C. 

Proof: Let C be a relatively compact set in S and (Pn) be a sequence in C. Let 

(An) be a sequence in S such that An is a factor of Pn for all n > 1. Then by 

Theorem 1.2.21 of [He], there exists a sequence (xn) such that (XnAn) is relatively 

compact. This implies that  (xnwgx~ 1) is relatively compact. Since K is finite, we 

have that  (xnkx~ ~) is relatively compact for all k E K.  Let K = {kl, k2 , . . . ,  km}. 
Then for i = 1 , 2 , . . . , m ,  (xnkixn) is finite. This implies that there exists a 

subsequenee (Xn,i) such that (Xn,ikixn,~) is a constant sequence for i = 1. Now 

for i + 1, let (Xn,i+l) be a subsequence of (Xn,i) such that (Xn,i+lki+lXn,i+l) is 

a constant sequence. Thus, for k = IKI, we have that  (Xn,kkixn,lk) is a constant 

sequence for all ki E K.  Thus (xn), in fact every subsequence of (xn), has a 

relatively compact subsequenee in G/Z(K).  This shows that  (xn) is relatively 

compact in G/Z(K).  Thus the set of factors of a relatively compact set C of S 

is weakly shift compact in S. | 

COROLLARY 5.1: Let G be a locally compact second countable group admitting 
a compact open normal subgroup U and (G, K) be a Gelfand pair. Let S be 
the semlgroup of all K-biinwariant probability measures on G. Suppose (G, K) 

satisfies condition (*). Then the set of factors of a relatively compact set C of S 
is weakly shift compact in S. 

Proof: It is easy to see that  G is a-compact. Let p: G --+ G/U be the canonical 

quotient map. Since U is an open normal subgroup, G/U is discrete. Let M -- 
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UK -= KU.  Then (G/U,M/U)  is a Gelfand pair. Let (Pn) be a relatively 

compact sequence in S and (An) be a sequence in S such that,  for each n > 1, 

An is a factor of ttn in S. Then (p(ltn)) is relatively compact and p(An) is a 

factor of P(Pn) for all n >_ 1. By Proposition 5.1, there exists a sequence (gn) 

in G such that  (p(gn)An) is relatively compact and, for every n _> 1, P(gn) E 

Z ( M / U ) ,  the centralizer of M in G/U. In particular, for every n > 1, gn E 

N ( M ) ,  the normalizer of M in G. Since (G, K) satisfies condition (*), we have 

N ( M )  = N ( K ) M .  Thus, there exists a sequence (Xn) in N ( K )  such that (XnA~) 

is relatively compact. This proves that Tc is weakly shift compact when C is 

relatively compact. I 

The following proves the Khinchin's Theorem for Gelfand pairs considered in 

the above corollary. 

THEOREM 5.1: Let G be a locally compact second countable group admitting 

a compact open normal subgroup and (G, K) be a Gelfand pair. Suppose the 

Gelfand pair (G, K) satisfies condition (*). Let S be the semigroup of all K-  

biinvariant probability measures on G. Then we have the following: 

1. the semigroup S is a division compact strongly stable uniformly Hungarian 

semigroup. 

2. S is first countable and hence Khinchin's factorization theorem holds for 

S. 

3. T = 7)(P( . . .  (7)(S)) .. .))satisfies (1), (2) and (3) of Corollary 4.1. 

Proo~ By Corollary 5.1 and by Lemma 4.2, r  is compact for any compact 

subset C of S. This proves that S satisfies (H-3). The verification (H-l) is 

trivial and (H-2) follows because (G, K)  satisfies condition (*). Thus, S is a 

first countable Hungarian semigroup and hence Khinchin's factorization theorem 

holds for S. By arguing as in Theorem 4.1 and Corollary 4.1, the remaining parts 

of the theorem can be proved. I 

Let G be a locally compact group and K be a compact subgroup of G. Suppose 

X = G / K  has a G-invariant metric. Then we say that the action of G on X is 

d o u b l y  t r a n s i t i v e  or G ac ts  d o u b l y  t r a n s i t i v e l y  on  X, if d(x, y) = d(x ~, yt) 

implies that there exists a g E G such that gx = gx ~ and gy = gy~ (it is also 

known as two-point homogeneous). We now introduce a class of Gelfand pairs 

that generalizes doubly transitive case. A pair (G, K)  consisting of a locally 

compact group G and a compact subgroup K of G is called a s y m m e t r i c  pa i r  

if g-1 E K g K  for all g C G. It is known that if G acts doubly transitively on 

G / K ,  then (G, K) is a symmetric pair (see [F]). We now prove that  such pairs are 
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Gelfand and the semigroup of K-biinvariant probability measures on such pairs 

forms a strongly stable Hungarian semigroup. We first prove factor compactness 

for such Gelfand pairs. 

PROPOSITION 5.2: Let (G, K) be a symmetric pair. Then (G, K)  is Gelfand. 

Let S be the semigroup of all K-biinvariant probability measures on G. Suppose 

G is 2-root compact (see [He]). Then for any compact subset C of S, the set of 

factors is a compact set in S. 

Proo~ Since all measures in S are symmetric and S is a semigroup, it is easy 

to see that (G, K) is a Gelfand pair. 

Let (Pn) be a relatively compact sequence in S and (An) be a sequence in S 

such that, for each n _> 1, An is a factor of ttn in S. Then by Theorem 1.2.21 of 

[He], there exists a sequence (xn) in G such that  (XnAn) is relatively compact. 

Since An is symmetric, we have (AnXn 1) is relatively compact and hence (A~) is 

relatively compact. Since G is 2-root compact, (An) is relatively compact (see 

[He]). Let C be a compact set in S and (An) be a sequence in To such that 

An ~ ,~ E S. Then there exists a sequence (#n) in C and sequence (vn) in S 

such that  ~t n : ) ~ n V n  = V n , ~  n for all n > 1. Since C is compact, by Theorem 

1.2.21 of [He], (Vn) is relatively compact. By passing to a subsequence, we may 

assume that #n -9 # E C a n d  vn--~ v E S. Then since An--4 A E S, we have 

# -- Av = vA. Thus, A E To. This proves that Tc is closed. Thus, the set of 

factors of a compact set is compact. | 

We now prove Khinchin's Theorem for symmetric (Gelfand) pairs. 

THEOREM 5.2: Let (G ,K)  be a symmetric pair. Let S be the semigroup of all 

K-biinvariant probability measures on G. Suppose G is 2-root compact and the 

pair (G, K)  satisfies condition (*). Then the conclusions of Theorem 5.1 hold for 

S. 

Proof'. Since (H-l) is verified easily and (H-2) follows from the fact that (G, K) 

satisfies condition (*). Since G is 2-root compact, by Proposition 5.2, for each 

compact set C of S, the set of factors Tc is also a compact set. Thus, (H-3) and 

strong stability are easily verified. The rest may be proved as in Theorem 5.1. 
| 

Remark: M. Voit has proved Khinchin's Theorems for measures on symmetric 

hypergroups (which includes all symmetric pairs) satisfying a condition 7) (see 

Theorem 5.4.14 and Theorem 5.4.12 of [BH] and 5.4.2 of [BH] for the definition 
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of/P).  Here we prove all three Khinchin's Theorems for all symmetric Gelfand 

pairs when G is 2-root compact and our approach is different and quite simple. 

We would also like to mention [Hell where H. Heyer proves Khinchin's 

Theorems for certain Gelfand pairs. 

6. K h i n c h i n ' s  T h e o r e m s  for  p-adic  G e l f a n d  pairs 

We now prove the analogue of Theorem 4.1 for Zariski-connected p-adic algebraic 

groups. 

We first establish the following result that is useful in proving the factor 

compactness for Gelfand pairs considered in this section. 

PROPOSITION 6.1: Let G be a Zariski-connected p-adic algebraic group and K 

be a compact subgroup of G. Let (#n) be a relatively compact sequence of K-  

biinvariant probability measures on G and (An) be a sequence of K-biinvariant 

probability measures on G such that An is a factor of Pn for all n >_ 1. Suppose 

(G, K) is a Gelfand pair. Then there exists a sequence (xn) in Z(G) such that 

(xnAn) is relatively compact. 

Proof: Since G is totally disconnected and K is a compact group, there exists 

a compact open subgroup M of G containing K.  Since, for a sequence (xn) in 

Z(G), (XnWM * An) is relatively compact implies (xnAn) is relatively compact and 

(M M * A n is a factor of WM * #n for all n > 1, we may assume that K is a compact 

open subgroup of G. Since A n is a two-sided factor of tt~, there exists a sequence 

(Xn) in G such that (XnAn) and (Anxn) are relatively compact. 

We now claim that (Xn) is relatively compact in G/Z(G). Since (An) is 

K-biinvariant, we get t h a t  (Xn~.dKXnlXnAn) and (AnXnWKXnlXn) are relatively 

compact. By Theorem 1.2.21 of [He], (XnWKX~ 1) and (XnlWKXn) are relatively 

compact. By Lemma 3.4, for each k E K,  the sequence, (xnkx~ 1) and (x~lkxn) 
are relatively compact. Thus, the group 

H = {h E H I (xnhx~ 1) is bounded} 

is an open subgroup of G. Since G is a Zariski-connected algebraic group, it has 

a finite-dimensional faithful rational representation. Let p: G --+ GL(V) be a 

rational faithful representation of G. Let W be the subalgebra generated by G in 

End(V). Now for n _> 1, define rn: W --~ W by rn(w) = xnwx~ 1 for all w C W. 

Then Tn E GL(W) and (Tn(k)) is relatively compact for all k E K. Then by 

Lemma 3.5, there exists a subalgebra of W0 of W containing H and (Tn(W)) is 

relatively compact in W for all w C Wo. Since G g) Wo is an algebraic subgroup, 
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we get that  W0 = W. Thus, (vn) is relatively compact in End(V). Similarly, 

we may prove that  (Tn 1) is also relatively compact in End(V). This proves that  

(rn) is relatively compact in GL(W).  Since G is an algebraic group, we get that 

(Xn) is relatively compact in G/Z(G).  | 

We now prove Khinchin's Theorem. 

THEOREM 6.1: Let G be a Zariski-connected p-adic algebraic group. Suppose 

(G, K) is a Gelfand pair satisfying condition (*). Let S be the semigroup of 

K-biinvariant probability measures on G. Then (1), (2) and (3) of Theorem 5.1 

hold for S. 

Proo~ The verification of (H-I) is quite easy. The verification of (H-2) follows 

from the assumption that (G, K) satisfies condition (*). The rest of the proof is 

quite similar to the proof of Theorem 4.1 and the proof of Corollary 4.1, so we 

omit the details. | 

We now consider compact extension of unipotent algebraic groups. We first, 

as usual, establish the factor compactness. 

PROPOSITION 6.2: Let G be a compact extension of a normal unipotent algebraic 

group. Let K be a compact subgroup of G. Let (#n) be a relatively compact 

sequence of K-biinvariant probability measures and (An) be a sequence of K-  

biinvariant probability measures such that, for each n > 1, An is a factor of 

#~. Then there exists a sequence (xn) in Z ( K )  such that (xnAn) is relatively 

compact. 

Proof'. Since An is a factor of #n for all n k 1 and (An) is relatively compact, 

there exists a sequence (gn) in G such that (gnAn) is relatively compact (see [P]). 
Let U be a unipotent normal subgroup of G, such that G/U is compact. This 

implies that  gn = UnCn and un C U for all n >_ 1 and (ca) is relatively compact. 

Since (gnAn) is relatively compact, (u,  An) is relatively compact. Since A n is 

K-biinvariant, 

Un~dKUnlUnAn ~ unA n 

for all n k 1. Thus, (UnWKUn 1) is relatively compact (see Theorem of [He]). Now 

from Lemma 3.4, for each k C K,  (unku~ 1) is relatively compact. This implies 

that, for each k c K,  (unkunlk -1) is relatively compact. Now applying Lemma 

3.2, there exists a bounded sequence (b,) in U such that 

u,  = bnxn and Xn E Z(I~) 
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for all n _> 1. This  proves the proposit ion.  | 

We now prove Khinchin 's  factorizat ion theorem when G is a compac t  extension 

of a unipotent  group. 

THEOREM 6.2: Let G be a compact extension era unipotent algebraic group and 

(G, K )  be a Gelfand pair. Let S be the semigroup of all K-biinvariant probability 

measures on O. Suppose (O, K) satis es condition (*). Then conclusions (1), (2) 
and (3) of Theorem 5.1 hold for S. 

Proof: Using Proposi t ion  6.2, one m a y  prove the result by arguing as in Theorem 

6.1. | 

Remark: In Theorem 6.2, if G is replaced by a compac t  extension of a connected 

ni lpotent  (real) Lie group, the conclusions are still valid. 

7. L i m i t  t h e o r e m s  a n d  e m b e d d i n g  

Let H be any set in a topological  semigroup S. Then  

n(J~f) = {/yk I pn �9 ]~f k ~ n}. 

In proving limit theorems and embedding of probabi l i ty  measures,  we need the 

compactness  of the root  set T~(Af); see IS1] and [Te] for results on limit theorems 

for probabi l i ty  measures  on general locally compac t  groups. An element s of a 

Hungar ian  semigroup S is said to be w e a k l y  i n f i n i t e l y  d i v i s i b l e  if, for each 

n is an associate of s and s is said to be n _> 1, there exists an sn in S such tha t  s n 

i n f i n i t e l y  d i v i s i b l e  if, for each n > 1, there exists an sn in S such tha t  s n = s. 

An element s of a Hungar ian  semigroup S is said to be e m b e d d a b l e  in a con- 

t inuous convolution semigroup in S if there exists a continuous h o m o m o r p h i s m  

t ~ st from [0, oc) into S such tha t  s l  = s. 

LEMMA 7.1 : Let G be a locally compact second countable group and K be a com- 

pact subgroup of G such that (G ,K)  is a Gelfand pair. Let S be the semigroup 

of K-biinvariant probability measures on G. Suppose N ( K )  is a strongly root 

compact group where N ( K )  is the normalizer of K in G and Ti(A[) is strongly 

shift compact. Then T~(A/) is relatively compact in S. 

Proo[: Since T~(Af) is s t rongly shift compact ,  we get that ,  for each u E T~(Af), 

there exists a unit  and hence, by Proposi t ion 2.3, an element x(u)  E N ( K )  such 

tha t  {x(~,)v I u �9 7~(H)} is relatively compact .  Let e �9 (0, ~). Let  u �9 7~(Af) 
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be such tha t  u n E Af. Then  for each 1 < k < n there exists a Xk E N(K)  and 

a compact  set C(e) such tha t  uk(Cxk) > 1 -- e. Replacing C by K C K ,  which is 

again a compact  set containing C, if necessary we may assume tha t  xC = Cx, 
for all x C N(K).  Now for any 1 _< k, l, k + 1 _< n, 

uk+l(CxkCx~) >__ uk(Cxk)ul(Cxt) >_ (1 -- e) 2 

and hence 

uk+l(CxkCxlMCxk+l) >_ uk+t(CxkCxt)-uk+l(a \ Cxk+l) >_ (1--e)2--e _> 1--3e. 

S i n c e 0 < e <  �89 

CxkCxl n Cxk+~ r O. 

This implies tha t  

CCxkxl n Cxk+z r O. 

Thus, we may choose {x l , x2 , . . .  ,Xn}, a set of n points in N(K),  such tha t  for 

any 1 _< k, l, k + l < n, 

xkxtxk~_ t C CCC -~. 

Let D = CCC -1 M N(K).  Then since D c DDD -1, 

XkXlXk~rl E DDD -1 7s 0 

and hence, since xD = Dx for all x E N ( K ) ,  we have 

DxkDxt CI DXk+l 7 s 0 

for all 1 < k, I, k + l < n. Since N(K)  is s trongly root  compact ,  there exists a 

compact  set B such tha t  x~ E B, for all 1 < i < n. This implies tha t  u(CB) >_ 
u(Cxl) _> 1 - e. By Prohorov ' s  Theorem we deduce tha t  T~(Af) is relatively 

compact .  I 

Remark: Suppose G is a Lie group. Then N(K)  is a strongly root  compact  

group which may be seen as follows: Since (G, K)  is a Gelfand pair, N ( K ) / K  
is a commutat ive  Lie group and hence, by 3.1.12 and 3.1.13 of [He], N(K)  is a 

strongly root  compact  group. 

We now prove the functional limit theorem. 
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THEOREM 7.1: Let (G ,K)  be a Gel[and pair and  G is a locally compact a- 

compact second countable group. Suppose the semigroup S of all K-biinvariant 

probability measures  on G is strongly stable and the normalizer N ( K )  of K in 

G is strongly root compact. Let (Vn) be a sequence in S such that t~kn n -4 p as 

kn --+ oo. Then 

(a) # has an associate A that is infinitely divisible in S, and 

(b) there exists a one-parameter continuous convolution semigroup (At) in S 

and a compact connected subgroup C of N ( K ) / M  such that A1 = cA and 

cM E C for some compact subgroup M containing K.  

Proof: Let I (p)  = {g E G ] gp = #g = #}. Then,  by replacing vn by vnw1(~), 

we m a y  assume tha t  

I . 'n~dl(p)  = U n 

for all n > 1. Let A = {v~ [ k < kn,n  >_ 1}. Then  since S is s t rongly stable,  

A is weakly shift compac t  and hence, by L e m m a  7.1, A is relatively compact .  

Since vn E A for all n _> 1, by passing to a subsequence we may  assume tha t  

(Vn) converges. L e t ,  be the limit point  of (Vn). Then  vJ e -A and hence (vJ) is 

relatively compact .  We now claim tha t  t,J is a factor  of p for all j _> 1. For any 

j > 1, we have, for large n, 
k,~ = u k , ~ - - j  v j  

12n n n"  

By let t ing n --9 cr over a subsequence of (n), we get tha t  

# : Aju j 

for all j >_ 1. Thus,  vJ is a factor  of # for all j _> 1. Then  by 22.12 of [RS], v# is 

an associate of  # and hence, by 22.13 of [RS], v is an associate of Wl(~). Let u be 

a unit  in S such tha t  v -- uw1(~). Then  it is easy to see tha t  7/n = u- l vn  --4 Wl(~). 

Since vJ E A for all j ,  we get tha t  (uJ) is relatively compact ,  in par t icular  (u kn) 

is relat ively compact .  Then  again by passing to a subsequence (kn), if necessary, 

we may  assume tha t  u kn --+ u ' ,  a unit  in S. This  implies tha t  7/~ ~ --4 u ' - l t t  = A, 

say. 

Let p = wi(~). Then  pA = A. I t  is clear tha t  ~/n is I (#) - invar ian t .  Now using a 

diagonal  process and by passing to a subsequence we may  assume tha t  

~[n kn/m] ~ A1/m 

as n --4 oc for all m E N. Also, since each fin is I (#) - invar ian t ,  A l l  m is also 

I (p) - invar ian t .  
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We now claim tha t  At~ m = A for all m > 1. Now for m > 1, 

l][kn/m]m~r~ kn 
n "in : ~n 

for some 0 _< rn < m. Then by taking limit when n --+ c~ over a subsequence of 

(n), we get tha t  A~/mp -- A and hence AI~ m = A. This proves tha t  an associate 

of # is infinitely divisible. 
A(m+l) We now claim tha t  A1/m! = 1~(re+t)! for all m > 1. For large n, 

@n k~/m!] = "ln'[kn/(mT1)!](m+l)'rn'ln 

for some 0 _< rn < m + 1 and for all m > 1. It  follows from ~/~ -+ p tha t  

A(m+ L) 
AWm'~ = U(m+l)! 

for all m _> 1. 

Now by Lemma 3.1.30 of [He] there exists a semigroup homomorphism f :  Q+ --+ 

S such tha t  

f (1/m!)  = AUm! 

for all m E N. Since f ( (0 ,  1] N Q~-) c A is relatively compact  by Theorem 

3.5.1 of [He], there exists a compact  connected group C in S and a continuous 

convolution semigroup (At) such tha t  A1 = cA for some c C C. It  is easy to 

see that ,  for r < 1, f ( (O,r)A Q+) is contained in the set of factors of A. Since 

C = [~r<l f((O,r)MQ+), we get tha t  C is contained in the set of  factors of A. 

This implies tha t  the identity of C is an idempotent  factor of A. Thus, there 

exists a compact  subgroup L of G such that  C is a compact  connected subgroup 

of N ( L ) / L  and A * ga3L = A. Since I (# )  = I(A), we get tha t  L C I(#). Since 

N(L) = N(K)L ,  we get tha t  A1 = uA and u is contained in a compact  connected 

subgroup of N ( K ) / M  where M = N(K)  M I(#). I 

As a consequence of the above theorem and the results in the previous sections, 

we have the following functional limit theorem for Gelfand pairs. 

THEOREM 7.2: Let G be a locally compact second countable group and (G, K) 

be a Gelfand pair satisfying condition (*). Suppose G is either (a) connected 

or (b) almost connected and G has a compact normal subgroup M such that 

G /M is a Lie group and A d ( G / M )  is an almost algebraic group or (c) G has 

a compact open normal subgroup or (d) p-adic algebraic group or a compact 

extension of a unipotent algebraic group (connected nilpotent Lie group). Let S 

be the semigroup of all K-biinvariant probability measures on G. Suppose N(K)  

is strongly root compact. Then the conclusions of Theorem 7.1 hold for S. 
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Remark: It  should be remarked that  by verifying conditions in Theorem 2.3 of 

[Te] one may try to prove the functional limit theorem, but our proof is simpler 

(maybe because it is a particular case) and arguments are independent of the 

proof of Theorem 2.3 of [Te]. 

THEOREM 7.3: Let (G, K)  be a symmetric pair. Suppose G is 2-root compact 

and (G, K) satisfies condition (*). Let S be the semigroup of ali K-biinyariant 

probability measures on G and (Un) be a sequence in G such that u~ --+ # E S. 

Then tt is embeddable in a continuous convolution semigroup in S. 

Proof: We first claim that  N ( K )  is compact.  For any x C N ( K ) ,  since (G, K)  

is a symmetric pair, x -1 E K x K  = x K  which implies x 2 E K.  Since G is 2- 

root compact,  N ( K )  is compact.  By Theorem 7.1, # has an associate A that  is 

infinitely divisible and u)~ is embeddable in a continuous convolution semigroup 

in S for some u contained in a compact connected subgroup N ( K ) / M  where 

M = N ( K )  N I(#).  Since all K-biinvariant measures are symmetric,  N ( K ) / M  is 

a abelian group and all its elements are of order 2. This implies that  N ( K ) / M  

has no connected subgroups and hence A is embeddable. It  is clear from the proof 

of Theorem 7.1 that  ~ = up and u is a limit of (uk'~). Choosing kn = 2n, we 

may prove that  )~ = #. Thus, # itself is embeddable in a continuous convolution 

semigroup. I 

Remark: In [He2], it is proved that  infinitely divisible measures are embeddable 

for discrete Gelfand pairs. 

8. Normability and infinitesimal limits 

In this section we study the second and third theorems of Khinchin. Let S be any 

Hausdorff topological semigroup and I be a directed set. A n / - a r r a y  is a system 
n(i) ((ti j)j=l)ieI,  ti,j E S. In particular, if I is the set of positive integers, we say 

that  (tij) is a triangular system. A n / - a r r a y  (tij) is i n f in i t e s ima l  if, for every 

neighbourhood U of identity in S, there is an i0 C I such that  tij E U for all i > i0 

and all 1 <_ j <_ n(i). We say that  s C S is an infinitesimal limit if there exists 

an infini tesimal/-array (tij) such that  s = lim(l-Ij tij). Khinchin's third theorem 

says that  any infinitesimal limit is infinitely divisible in S -- 7~(R). Khinchin's 

third theorem was extended to general abelian groups by Ruzsa and Szekely (see 

[RS]). We prove an analogue of this for Gelfand pairs. We first establish the 

normability of the semigroup S of K-biinvariant probability measures on G for 
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Gelfand pairs (G, K).  For any A E S define A by 

A(E) = A(E -1) 

where E -1 -- {x -1 [ x E E} for all Borel subsets of G. I t  is easy to see that  

for all A E S, that  is, measures in S are all normal. 

We denote by S ~ the semigroup of symmetrizat ion of measures in S. 

(I): S --+ S 8 be the map  defined by 

= 

Let 

for all A E S. Since S is a commutative semigroup, we get that  (I) is a homomor- 

phism of S into S ~. For any A E S, by T~ we denote the set of all factors of A in 

S and, for any it E S 8, by T~ we denote the set of all factors of p in S s. We now 

prove the following: 

LEMMA 8.1: For any A E S, ff~(A) is a the shift of an idempotent i f  and only if  

the shift of A is an idempotent. For A E S, let it = ff~(A). I f  there is a continuous 

par t / a /homomorph i sm f ,  from T~ into [0, oo) such that f , ( i t )  > O, then there 

exists a continuous part~a1 homomorphism f ~ from T~ into [0, oo). 

Proof: Suppose A ,  A is a shift of an idempotent, say ~ M .  Then S(,~)S(,~) -1  C 

u M  for some u E N ( K ) .  This implies that  u M  contains the identity of G and 

hence u E M. Thus, AA is an idempotent. Since A is normal, by Lemma 2.1 of 

[E], we get that  A is a shift of an idempotent. The converse part  and the second 

part  of the lemma are obvious. I 

We now prove the existence of a partial homomorphism for any commutat ive 

hypergroup (see [BH] for details on hypergroups); the proof is quite similar to 

the case of locally compact abelian groups (see [RS]). 

PROPOSITION 8.1: Let K be a commutative second countable hypergroup. Let 

A E P ( K )  be a measure such that A �9 A is not an idempotent. Then there exists 

a continuous part~a1 homomorphism f~: T~ -+ [0, oo) such that f~(A) > 0. 

Proof'. Since A * A is not an idempotent, by Theorem 2.2.4 of [BH], there exists 

a continuous bounded multiplicative function ~ on K such that  

0 < [A(X)[ 2 < 1. 
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Let f~: T~ ~ [0, oo) be the map defined by 

: - log(l ( )l 2 )  

for all u E T~. Then, by Theorem 2.2.4 of [BH], f~ is a continuous partial 

homomorphism with the required condition. | 

We now deduce the normability for Gelfand pairs. 

COROLLARY 8.1: Let G be a locally compact second countable group and (G, K) 

be a Gelfand pair. Suppose the semigroup S of all K-biinvariant probability 

measures on G is a Hungarian semigroup. Then S is a normable Hungarian 

semigroup. 

Proof: By Theorem 1.1.9 of [BH], the double coset space G / / K  is a hypergroup. 

By Theorem 1.5.20 of [BH], S is isomorphic to probability measures on G / / K .  

Since (G, K) is a Gelfand pair, G / / K  is a commutative semigroup and hence the 

corollary follows from Proposition 8.1. | 

We now prove Khinchin's Theorems for certain Gelfand pairs. 

THEOREM 8.1: Let G be a locally compact second countable group and (G, K) 

be a Gelfand pair. Suppose G is as in Theorem 4.1 or Theorem 4.2 or Theorem 5.1 

or Theorem 5.2 or Theorem 6.1 or Theorem 6.2. Then the semigroup S of all K- 

biinvariant probability measures on G is a stable normed Hungarian semigroup. 

Consequently, Khinchin's first, second and third theorems hold for S. Moreover, 

if N(K)  is compact or N ( K ) / K  is divisible and strongly root compact, then any 

anti-indecomposable element in S or any infinitesimal limit in S has an associate 

that is embeddable in S. 

Proof: It is already proved that  the semigroup S of all K-biinvariant probability 

measures on G is a stable Hungarian semigroup. Now by Corollary 8.1, S is a 

stable normable Hungarian semigroup. By Theorem 24.17 and Theorem 26.9 of 

[RS], anti-indecomposable elements of S and infinitesimal limits in S are weakly 

infinitely divisible. 

Let # in S be either anti-indecomposable in S or # is a limit of an infinitesimal 

/-array. Then for each n > 1, there exists a Pn and a unit un such that  # = Un# n. 

If N(K)  is compact, then 

for some subsequence (kn) of (n) and A is an associate of #. Now from Theorem 

7.2, we deduce that  A has an associate that is embeddable. Thus, an associate 

of # is embeddable. 
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Suppose N ( K ) / K  is divisible and strongly root compact. Since u n E N (K ) ,  

there exists a xn E N ( K )  such that XnWK = UnWK for all n _> 1. This implies 

that 

~t = ( X n V n )  n 

for all n _> 1. By Theorem 7.2, an associate up of # is embeddable for some unit 

u contained in a compact subgroup of N ( K ) .  | 

Remark: Let (G, K) be a Gelfand pair such that  (a) G is connected or (b) G is 

an almost connected group considered in the article or (c) G is discrete or (d) G 

is a Zariski-connected p-adic algebraic group or (e) G is a compact extension of 

a unipotent algebraic group or a connected nilpotent Lie group (not necessarily 

satisfying condition (*)) and S be the semigroup of all K-biinvariant probability 

measures on G. Suppose A E S is a bald element, that is, a measure having no 

idempotent factors. Then using the factor compactness results (modulo the group 

of units, which follows for the connected or almost connected case from the fact 

that  for an almost connected Lie group G and a compact subgroup M containing 

K,  N ( M ) / M N ( K ) i s  finite (see [HHSWZ])) and applying the arguments of K. R. 

Parthasarathy (Chapter IV, Theorem 11.3 of [P]) as in Theorem 5.4.14 of [BH], 

one may prove Khinchin's factorization theorem for any bald A. Thus, it shows 

that 

(a) any measure in S is a product of a idempotent in S and a measure in S 

that has a Khinchin-type decomposition in S, and 

(b) any measure # E S has Khinchin's decomposition in a subsemigroup of S. 

As a consequence of Theorem 8.1 we obtain Khinchin's Theorems for compact 

symmetric spaces. 

COROLLARY 8.2: Let G be a compact connected semisimple Lie group and K 

be a compact connected subgroup of G such that G / K  is a compact Riemannian 

symmetric space. Then the semigroup S of K-biinvariant probability measures 

on G is a normable strongly stable Hungarian semigroup and Khinchin's first, 

second and third theorems hold for S. Moreover, any anti-indecomposable or 

infinitesimal limit has an associate that is embeddable. 

Proof'. Let S be the semigroup of K-biinvariant probability measures on G. 

Since G / K  is a Riemannian symmetric space, S is a commutative semigroup. 

By Lemma 2.3, S satisfies condition (*). Thus, since G is second countable, the 

corollary follows from Theorem 8.1. | 
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Remark: We note that  I. R. Truhina [Tr] and J. Lampert i  [L] have earlier in- 

vestigated and proved Khinchin's factorization theorem for probability measures 

on irreducible compact symmetric spaces of Rank 1. In [L], this was achieved by 

covering by delphic semigroups. Thus, our t reatment  is completely different and 

we consider the general cases. 

9.  G a u s s i a n  m e a s u r e s  o n  c o m p a c t  G e l f a n d  p a i r s  

Gaussian measures on ]R have two well-known properties: 

1. Gaussian measures on ]R have only Gaussian factors which is known as 

Cram~r's theorem; 

2. Gaussian measures have no indecomposable factors. 

Since Gaussian measures on ]R are infinitely divisible, the second property follows 

from the first property (see [Fe]). 

On the other hand, Marcinkiewicz [Ma] showed that  these properties are not 

verified by Gaussian measures on the circle. Truhina [Tr] proved that  SO(n)-  

invariant Gaussian measures on the spheres S n ~_ SO(n  + 1)~SO(n) are not 

anti-indecomposable. In this section we extend these results to compact Gelfand 

pairs. As in the previous sections for any compact subgroup L, we denote the 

normalized Haar measure on L by ~L- 

THEOREM 9.1: Let G be a compact connected Lie group and K be a compact 

subgroup of  G. Suppose (G, K)  is a Gelfand pair. Let It be a K-biinvariant 

probability measure on G such that  tile inequality 

(i) It(E) > awc(E) ,  O < a < l 

holds for all Borel subsets E of  G. Then It has an indecomposable factor. 

In [Fe], G. M. Feldman proved a similar theorem for measures on compact 

abelian groups. We apply some of the techniques of Theorem 4.17 of [Fe]. We 

first prove the following lemma. 

LEMMA 9.1: Let G, K and m a  be as in Theorem 9.1. Suppose It is a K -  

biinvariant probability measure on G verifying inequality (i). Then It decomposes 

in the following way: 

It - aug 
-- * [(1 -- a)wK + awe] (ii) It 1 -- a 

where 0 < a < 1 is as in inequality (i). 
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We now verify the result using the obvious properties: 

It * ~K = It, ~da * WK = wa and # * wa = wa. 
It -- awG a 

1 -- a * [(1 -- a)WK + awa] =(It  -- awa)WK + ~------a(It -- aWG)WG 

a a 2 
= i t  -- aWG + O)G -- - - W G  

1 - a  1 - a  

= #  - w G  
[a(1 - a) - a + a 2] 

1 - a  

= # .  | 

We now define K-bi invariant  compound  Poisson measures on Gelfand pairs. 

Let G be a locally compact  group and K be a compact  subgroup of G. Let 7 

be a K-bi invariant  signed bounded measure on a locally compact  group G. We 

define the c o m p o u n d  P o i s s o n  m e a s u r e  e(7) by 

O(3 
= 

n! 
n = 0  

where, by definition, y ~ = WK. It  is easy to see tha t  if 7 is a positive measure, 

e(7) is a K-bi invariant  probabil i ty measure on G. We now prove Theorem 9.1. 

Proo f  o f  Theorem 9.1: Observe tha t  if k > 0, then 

(iii) e(kwc)  = e - k w K  + (1 - e-k)wG. 

Choosing k > 0 such tha t  a = 1 - e -k,  we see by Lemma 9.1 tha t  e(kwG) 

is a factor of #. It  is sufficient to show tha t  e(kwG) r Io, the set of all anti- 

indecomposable measures. By hypothesis, there exist two points x, y E G but  

x, y ~ K such tha t  y ~ K x K .  Set z = yx  -1 E G, so tha t  y = zx.  By Urysohn 's  

Theorem, there exist two open sets U1 and Us such tha t  

for all i = 1, 2 and 

Ui = KU~K 

Ul r] U2 = 0 ,  

x E U 1 ,  y G U 2 ,  

e,z~Us. 

Define Ua -- K(zU1)  A Us and V = G \ U3. Then U3 and V are K-bi invariant  

open sets such that  U1 C V and z E V. I t  follows tha t  

U3 c KzU~ c V V  
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and  hence 

V V = G .  

Let  3  ̀be the  res t r ic t ion  of wa to the  open set V. Then  since wc is K -b i i nva r i a n t  

and  V is K-b i inva r i an t ,  it  is easy to see t ha t  the  measure  3  ̀is K-b i inva r i an t .  Also, 

it  can be seen tha t ,  since w a - 3 `  is a posi t ive  measure ,  e(k3`) is a factor  of e ( k w c ) .  

We now c la im tha t  3  ̀* 3  ̀has a s t r ic t ly  posi t ive  dens i ty  Xv * Xv. I t  is well-known 

tha t ,  since V is an open set, Xv * Xv is a cont inuous  function.  Let  x E V V .  Then  

there  exist  vl ,  v2 E V such t ha t  x = VlV2. Since V is an open set and  the m a p  

g ~-+ xg -1 is continuous,  there  exists  a ne ighbourhood  W of v2 in G such t ha t  

x W  -~ c V. 

This  implies  t ha t  

for all w E W .  Thus,  

x w  -1 E V 

Xv * Xv(x) = Iv  Xv(xg-1)dwG(g) 

>~oa(V n W )  

since v2 E V N W ,  V r-I W is a non -empty  open set in G and hence 

:~v * ~ v ( x )  > 0 

for all x E V V .  Since G = V V ,  X v  * )(.v is s t r ic t ly  posi t ive.  I t  is easy to  see t ha t  

Xv * Xv is the  dens i ty  of 3' * 3`. Since Xv * Xv is cont inuous  and  G is compac t ,  

there  exists  a cons tan t  c > 0 such t ha t  

X v  * X v ( x )  > c 

for all  x E G. I t  follows tha t ,  for any Borel  subset  E of G, 

3`(E) _> c w c ( E )  

and hence, for some cons tan t  0 < b < 1, 

> b a(Z) 

for all  Borel  subsets  E of G. Using again  L e m m a  9.1 and (iii) we get  t h a t  

(iv) e(kT) = #1 * e(klWG) 
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for a measure #1 E PK(G). We may suppose that 0 < kl < k. Note that 

the constants a, b, k, kl can be made arbitrarily small. Since e(kT) is a factor 

of e(kwG), in order to prove that e(kwG) has an indecomposable factor, it is 

sufficient to show that  e(k?) has an indecomposable factor. 

In the last part of the proof we will show that,  for 0 < k < kl small enough, the 

measure it: ~ I0. Suppose, on the contrary, that for any 0 < kl < k, u: E I0. By 

Theorem 6.2, the measure # is infinitely divisible and a power of it is embeddable. 

Now it is easy to see that any power of it: also satisfies equation (iv). Thus, by 

replacing #1 by a suitable power of #l ,  we may assume that #: is embeddable in 

a WL-continuous convolution semigroup (Pt)t>o, where L is a compact subgroup 

of G containing K. So (G, L) is also a compact Gelfand pair. Compact Gelfand 

pairs are strong hypergroups (see 4.3.23 of [BH]) and, by 5.2.15 and 5.2.29 of 

[BH], we have the following L~vy Khinchine formula for the semigroup (#t)t>o: 

fit(X) = exp{ - t ( a  + q(x) + / ( 1  - Re(x(x))d~(x))} 

where a C R, and q is a non-negative K-biinvariant quadratic form on G, y is 

the L~vy measure (a positive K-biinvariant measure on G) and X varies over all 

of the dual of (G, L). 

On the other hand, (iv) implies that 

P l  • e(k7 - klWG). 

In a similar way as Feldman (see 4.13 of [Fe D one shows that a = 0 and q = 0 

and that,  if k and k: are sufficiently small, then the L~vy measure ~ is finite and 

~(G) is arbitrarily small. This yields that #: = e(y) and it follows from (iv) that 

k~/ - klwG = ~, 

which is impossible because 

and 

~ k o  

(k-~ - k : w c ) ( g 3 )  < 0. 

Thus #1 r I0, that  is, #l is not anti-indecomposable and hence p is not anti- 

indecomposable. | 

Remark: In the proof of Theorem 9.1, we use the hypothesis that G is a con- 

nected Lie group to get the following: (a) the double coset space K \ G / K  has 

more than two points and (b) a finite power of a unit in P~c (G) is embeddable 
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in PK(G). The first s tatement (a) is always true for a connected group as the 

double coset space K \ G / K  is a connected space and the second statement (b) 

is true if (G, K)  is a symmetric pair. Thus, Theorem 9.1 may also be proved for 

more general compact Gelfand pairs which satisfy (a) and (b). 

COROLLARY 9.1: Let ( G , K )  be as in Theorem 9.1 and # be a K-bi-invariant 

probability measure on G. Suppose # is an absolutely continuous measure with 

everywhere positive continuous density. Then # is not anti-indecomposable. 

Proof Suppose # has an everywhere positive density, say f ;  then it is easy to 

see that,  for some a > 0, 

f (x)  > a 

for all x E G. This implies that  

p(E) > awa(E) 

for all Borel subsets E of G. Now the corollary is immediate from Theorem 9.1. 
| 

COROLLARY 9.2: Let (G, K) be a Gelfand pair with G a compact connected 

Lie group and K a compact subgroup of G. Let (Tt)t>0 be the heat semigroup 

generated by the Laplace-Beltrami operator A for the Riemannian homogeneo~ls 

manifold G/K.  Then 7t ~ Io for all t > O. In particular, the measures (Tt)t>0 

have non-Gaussian factors, that is, Cramdr's theorem does not hold for (Tt)t>0. 

Proof: We use the fact that  the m e a s u r e s  (Tt)t > 0 are K-invariant and that  they 

have everywhere positive smooth densities (see Theorem 5.2.1 of [DR]). | 

The following is easily deduced from Corollary 9.2. 

COROLLARY 9.3: Let G / K  be a Riemannian symmetric space of compact type. 

Then the Gaussian measures on G/K  (defined as belonging to the heat semi- 

group) have indecomposable factors and do not satisfy Cramdr's  theorem. 

10. Central limit theorems of  Lindeberg-Feller type 

Central limit theorems for a triangular array of measures converging to a Gaus- 

sian measure are known on Euclidean spaces, locally compact abelian groups 

and symmetric spaces. Gaussian measures on a Gelfand pair were introduced by 

Heyer (see [Hel]) by using the generalized Laplacians, introduced by Duflo [Du]. 
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In order to discuss the central limit problem on Gelfand pairs, we must intro- 

duce a notion of d i spe r s ion  D of a measure tt E PK(G), having the properties: 

D: PK (a)  ~ [o, co], 

(i) D(#I  * #2) = D#I + D#2 

and # 

= J Qdtt D# 

for a continuous K-biinvariant function Q. 

A natural candidate for the function Q is a p o s i t i v e - q u a d r a t i c  form on (G, K)  

defined according to Faraut-Harzalah [FH] as a real continuous symmetric K- 

biinvariant function verifying 

(ii) fK Q(xky)dk + fK Q(xky-1)dk = 2 (Q (x )+  q(y)) 

for all x, y E G. 

The property (ii) is equivalent to (i) when at least one of the measures #1, #2 

is symmetric. It is then natural to seek a Gaussian central limit theorem for a 

triangular array of symmetric measures. 

In [G1] such a theorem was proved on noncompact Riemannian symmetric 

spaces with dispersion defined using functions Q verifying the condition 

fg Q(xky)dk = Q(x) + Q(y) 

for all x, y E G. 

It is easy to see that 
Q8 = Q + Q  

defines a quadratic form and that a similar central limit theorem with dispersion 

(~) = ] Q'dt, D ~ 

holds for symmetric K-invariant measures on noncompact symmetric spaces 

a/K. 
Moreover, we can show that  the sufficient technical condition in [G1] is also 

necessary. 
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