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ABSTRACT

We prove Khinchin’s Theorems for Gelfand pairs (G, K) satisfying a con-
dition (*): (a) G is connected; (b) G is almost connected and Ad (G/M)
is almost algebraic for some compact normal subgroup M; (¢) G admits a
compact open normal subgroup; (d) (G, K) is symmetric and G is 2-root
compact; (e€) G is a Zariski-connected p-adic algebraic group; (f) com-
pact extension of unipotent algebraic groups; (g) compact extension of
connected nilpotent groups. In fact, condition (*) turns out to be neces-
sary and sufficient for K-biinvariant measures on aforementioned Gelfand
pairs to be Hungarian. We also prove that Cramér’s theorem does not
hold for a class of Gaussians on compact Gelfand pairs.
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1. Introduction

A classical theorem of Khinchin known as Khinchin’s factorization theorem,
which we call Khinchin’s first theorem, says that any probability measure on R
can be written as a countable product of indecomposable measures (possibly infi-
nite) and a probability measure without indecomposable factors. Khinchin’s fac-
torization theorem was extended to all commutative Hausdorff metrizable groups
by Ruzsa and Szekely (see [RS]). In [RS] Khinchin’s factorization for measures on
abelian Hausdorff groups is achieved by proving that the semigroup of probabil-
ity measures on such groups forms a first countable Hungarian semigroup. The
notion of Hungarian semigroups was introduced by Ruzsa and Szekely and stud-
ied in [RS]. It is shown in [RS] that any element in a first countable Hungarian
semigroup is a countable product of indecomposable elements (possibly infinite)
and an anti-indecomposable element. It is shown in [R] that the semigroup of
K -biinvariant probability measures on real or p-adic noncompact reductive sym-
metric spaces is a Hungarian semigroup and hence the factorization theorem
holds for such semigroups.

Another classical theorem of Khinchin, which we call Khinchin’s second theo-
rem, says that any anti-indecomposable measure on R is infinitely divisible. This
result was extended to many other groups by various authors. In [RS], Khinchin’s
second theorem is also proved for anti-indecomposable measures on first count-
able abelian Hausdorff groups by showing that semigroup of measures on such
groups form a normable Hungarian semigroup.

At this point we note that a Delphic semigroup is another approach to prove
the Khinchin’s Theorems for an abelian semigroup. It has been proved in [G3]
that the semigroup of measures on noncompact symmetric spaces form a Del-
phic semigroup but it can easily be seen that measures on compact symmetric
spaces do not form a Delphic semigroup (see {G3] for the definition of a Delphic
semigroup).

The study of probability questions on Gelfand pairs was initiated by Letac in
[Le] and by Heyer in [Hel} and [He2] where the author proves the Khinchin type
factorization result for some class of Gelfand pairs.

In this article we attempt to prove Khinchin’s Theorems for measures on
Gelfand pairs. In section 2 we introduce the concept of Gelfand pair and we
also prove some preliminary results which are needed in the succeeding sections
to prove Khinchin’s Theorems. In section 3 we prove results on factor compact-
ness which are needed in proving Khinchin’s Theorems. In section 4, we prove
Khinchin’s Theorems for connected Gelfand pairs. In sections 5 and 6, we prove



Vol. 132, 2002 PROBABILITY ON GELFAND PAIRS 63

Khinchin’s Theorems for certain Gelfand pairs which include discrete groups and
doubly transitive groups and p-adic algebraic groups.

One of the axioms of a Hungarian semigroup is that the set of factors of an
element is compact modulo the group of units. Some applications of this type of
factor compactness in analysis and arithmetic of probability measures are limit
theorems and embedding of infinitely divisible measures; see [S1], [S2] and [Te]
for more details on limit theorems on general locally compact groups. In section
7 we obtain limit theorems for measures on certain Gelfand pairs and also obtain
the embeddability of infinitely divisible measures on certain Gelfand pairs; the
embedding problem for general groups is studied by various authors (see [Mc]).

One more classical theorem of Khinchin, which we call Khinchin’s third theo-
rem, says that infinitesimal limits are infinitely divisible. This result was extended
by Ruzsa and Szekely to abelian metrizable groups such that the set of characters
separates points of the groups by showing that the semigroup of probability mea-
sures on such groups forms a stable normable Hungarian semigroup (see [RS]).
In section 8 we prove the normability, which in turn proves the second and third
theorems of Khinchin for Gelfand pairs.

In section 9 we discuss Gaussian measures on compact Gelfand pairs and prove
that Gaussian measures are not in the class of anti-indecomposable measures.
This in particular implies that Gaussian measures on certain compact Gelfand
pairs do not satisfy Cramér’s theorem: Cramér’s theorem says that Gaussian
measures on reals have only Gaussian factors and Cramér’s theorem was gener-
alized to abelian groups by various authors (see [Fe]) and to symmetric spaces of
noncompact type by Graczyk (see [G2]). While proving this we obtain a class of
measures which have indecomposable factors. In the last section we make some
remarks on central limit theorems of Lindeberg-Feller type for probabilities on
Gelfand pairs.

2. Preliminaries

Let G be a locally compact second countable group and K be a compact subgroup
of G. Then we say that the pair (G, K) is a Gelfand pair if the convolution
semigroup Pg (G) of all K-biinvariant probability measures on G is a commuta-
tive semigroup; see [BJR], [F|, [GV] and [MV] for more on harmonic analysis on
Gelfand pairs. For any probability measure p1, S(11) denotes the support of p, and
for any compact subgroup M of G, wys denotes the normalized Haar measure on
M.



64 P. GRACZYK AND C. R. E. RAJA Isr. J. Math.

Examples:

(1) For any locally compact abelian group G and any compact subgroup K of
G, (G, K) is Gelfand.

(2) The semigroup of probability measures on a real reductive group G that
are K-biinvariant for a maximal compact subgroup K of G is commutative
and hence the pair (G, K) is a Gelfand pair (see [R]).

(3) The semigroup of probability measures on the Euclidean motion group
G that are SO(n)-biinvariant is commutative and hence (G,SO(n)) is a
Gelfand pair.

PropPoSITION 2.1: Let G be a locally compact second countable group and K
be a compact subgroup of G. Then the following are equivalent:
1. (G, K) is a Gelfand pair;
2. for any z,y € G, KsKyK = KyKzK;
3. for any z,y € G, ry € KyKzK;
4. the algebra L1.(G) of K-biinvariant integrable functions on G is a
commutative algebra.

Proof: One may prove that (1) implies (2) by considering the K-biinvariant
measures wi d;wg and wixdywg for x,y € G, and that (2) implies (3) is obvious.

We now prove (3) implies (4). We first prove that (3) implies G is unimodular.
Let m be a left invariant Haar measure on G. Let U be a compact neighbourhood
of e such that KUK = U. Then for g € G,

m(Ug) =/XU(9~'Q)d$
= /XE(gkx)dx (k depends on x)

= /Xu(x)dx (yde =dz, y € G and KUK =U)
=m(U).
This proves that G is unimodular. The rest of the proof of (3) implies (4) is quite
similar to Theorem 1.12 of [BJR].
The implication (4) implies (1) follows from the existence of an approximate

identity sequence in L} (G) (see Lemma 1.6.8 of [GV] or Theorem 2.2.28 of of
[BH)). |

Thus, the above result says that our definition of Gelfand pair agrees with the
classical notion of Gelfand pair. We now prove that the Gelfand pair property
preserves quotients.
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PROPOSITION 2.2: Let (G, K) be a Gelfand pair and H be a normal subgroup
of G. Let M = KH/K. Then (G/H, M) is also a Gelfand pair.

Proof: Let z,y € G. Since (G,K) is a Gelfand pair, by Proposition 2.1,
zy € KyKzK; that is, there exist ki, ko and k3 such that xy = kyykexks. This
implies that tHyH € kyHyHkoHxHksH. Again by Proposition 2.1, (G/H, M)
is also a Gelfand pair. |

In this article we attempt to prove all three theorems of Khinchin for Gelfand
pairs. This is achieved by applying the Hungarian semigroup theory; see [R] and
[RS] for more details on Khinchin’s Theorems and Hungarian semigroups.

Let S be a commutative Hausdorff semigroup with identity e. Let ~ be a
relation defined on S for x,y € S, by

r~y&Sr=ry and y=sx

for some r,s € S. Any two elements x and y of S are said to be associates if
z ~ y. An element u of S is called a unit of S if it is invertible in S. Let S*
be the quotient semigroup corresponding to the relation ~ and ¢: S — S* the
canonical quotient map (this notation is followed throughout the article). We
say that the semigroup S is Hungarian if it satisfies the following properties:
(H-1) the set of associate pairs is a closed subset of S x §;

(H-2) if  and y are associates, then x = uy for some unit « in S;

(H-3) the set of divisors (factors) of any element in S* is compact.

For any two subsets A and B of S and any s,t € S, let us write A; ~ (B if,
for any a € A, there exists a b € B such that a = sb and b = ta. A Hungarian
semigroup S is called uniformly Hungarian if, for any s,t € S and subsets A
and B of S such that A; ~ B, there exist units v and v in S such that 4, ~ ,B.
The notion of uniformly Hungarian semigroup was introduced by A. Zempléni in
[Ze] to study the heredity of Hun and Hungarian semigroups.

A sequence (z,) in a topological space X is said to be relatively compact
or bounded if it is contained in a compact subset of X.

We first prove following elementary results that are needed in proving the
main results. The first of such results characterizes all units in the semigroup of
probability measures on Gelfand pairs.

PROPOSITION 2.3: Let G be a locally compact group and K be a compact sub-
group of G. Suppose X\ and p are K-biinvariant probability measures on G such
that X = Ay = wg. Then A = zwg for some x in N(K), the normalizer of
K. Suppose (G, K) is a Gelfand pair and S is the semigroup of K-biinvariant
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probability measures on G. Then ) is a unit in S if and only if A = zwk for some
z e N(K).

Proof: Let A and p be K-biinvariant probability measures on G such that
Ax =W = p*A
This implies that
S(NS(u) US(u)S() € K

and hence, for any g € S(u), Ag is a left K-invariant probability measure sup-
ported on K. Thus, A\g = wk. Since S(A\) C Kg~!, we have wxx = wxg~! for
all z € S(A). Thus,

A=Wkt

for any x € S(A). Similarly, we may prove that
A= TWi

for all x € S(A). This implies that

wax—l = WK

and hence z € N(K'). The second part of the proposition follows from the fact
that any measure of the form zwg, for z € N(K), is K-biinvariant and z~lwg
is the inverse of Twg. |

The following lemma is very useful and used often in the sequel without even
referring to it.

LEMMA 2.1: Let G be a locally compact group and K be a compact subgroup of
G. Suppose (G, K) is a Gelfand pair. Then any compact subgroup M containing
K is normalized by N(K), the normalizer of K, and (G, M) is also a Gelfand
pair.

Proof: Let x € N(K). Then zwg and wgz~! are K-biinvariant probability
measures. Since (G, K) is a Gelfand pair, this implies that

WeMe-1 = wawaKx_l = wawKw_l = WMWK = WM.

Thus, zMx~1 = M. The second part of the theorem follows from the fact that
M-biinvariant probability measures are also K-biinvariant. |

The next lemma determines when the semigroup of probability measures on a
Gelfand pair satisfies (H-2).
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LEMMA 2.2: Let G be a locally compact group and K be a compact subgroup
of G. Let S be the semigroup of all K-biinvariant probability measures on G.
Suppose (G, K) is a Gelfand pair. For any subgroup H of G, N(H) denotes the
normalizer of H in G. Then the following are equivalent:

1. (H-2) holds for S;

2. for every compact subgroup M of G containing K and x € G such that

rKz~' C M, we have x € N(K)M;
3. for every compact subgroup M of G containing K, N(M) = N(K)M.

Proof: Suppose S satisfies (H-2). Let M be a compact subgroup of G containing
K. Suppose = € G is such that

(i) K and zKz™'C M.
Consider
(it) A=wy and p=wgbwpy.

Then A and y are in S. Let

1 = wrl,—1wi  and vy = wil,Wi .
Then v1,v3 € S and, by (i), we get that

U =Wk 1wy = WrO—1WEWH = V1A

and

A=Wy = WEkWM = WK WKd— 1wy = Vol

Thus, A and p are associates. Then A = uy for some unit v in S. By Proposition
2.3,

A=up = gwip = gu
for some g € N{K'). Thus, by substituting (ii), we have

wKéw_le = gWpm

and hence Kz~!M = gM for some g € N(K). This implies that z—! € gM C
N(K)M. This proves that (1) implies (2).
Suppose (2) holds. Let M be a compact subgroup of G containing K. Then

sRz ' caMs'=M
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for all z € N(M) and hence by assumption x € N(K)M for all x € N(M). This
implies that N(M) C N(K)M. Since K C M, N(K) normalizes M, that is,
N(K)C N(M). Thus, N(M) = N(K)M. This proves that (2) implies (3).
Suppose for every compact subgroup M of G containing K, we have N(M) =
N(K)M. We now prove that S satisfies (H-2). Let u, A, v; and vy be in S.
Suppose
p=v1A and A =uyu.

Then
H=vivgp

and hence, by Theorem 1.2.7 of [He], S(11)S(v2) C {9 € G | gp = p = pg} =M,
say. Since y is K-biinvariant, K C M. Replacing v; by wpy * v, for i = 1,2, if
necessary we may assume that v; xwys = v, for 1 = 1,2. Then we have

ViVa = Wpm = Valy.

By Proposition 2.3, v; = z;wp for some z; € N(M) for ¢ = 1,2. This implies
that z; € N(K)M = MN(K) for i = 1,2. This implies that v; = g;was for some
gi € N(K) for t = 1,2. Thus, g = g1 for g3 € N(K). This proves that (3)
implies (1). 1

We say that a pair (G, K) consisting of a locally compact group G and a
compact subgroup K of G satisfies condition (*) if (2) or (3) of Lemma 2.2
is satisfied. Thus, a Gelfand pair (G, K) satisfies condition (*) if and only if the
semigroup of K-biinvariant probability measures on G satisfies (H-2). We will
see that this condition plays a vital role in proving Khinchin’s Theorems.

It is easy to see that when K is a maximal compact subgroup, condition (*)
is satisfied. It is also easy to see that (G, K) satisfies condition (*) when G is
a connected Lie group and K is a maximal torus which may be seen as follows:
suppose M is a compact group containing K’; then for x € N(M), 2Kz~ =
mKm™! for some m € M and hence N(M) = N(K)M. Also, if there exists a
compact group L contained in K such that (G, L) satisfies condition (*), then
(G, K) also satisfies condition (*) which follows from the equation

N(M) = N(L)M = N(L)KM = N(K)M

for any compact subgroup M containing K.
We now prove that the Gelfand pair (G, K) satisfies condition (*) when G/K
is a compact Riemannian symmetric space. We first observe the following:
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PROPOSITION 2.4: Let G/K be an irreducible Riemannian symmetric space.
Then K is a maximal proper compact connected subgroup of G.

Proof: Let H be a compact connected subgroup of G containing K properly.
Let G, K and H be the Lie algebras of G, K and H respectively, with G = K@ P.
Since G/K is irreducible, Ad (K') acts irreducibly on the subspace P where Ad
is the adjoint representation of G on its Lie algebra G. Since H contains K, the
subspace HN P is a Ad (K )-invariant subspace of P and hence HN P = (0) or
P. This implies that H = K or H = . This proves the proposition. |

PRroPOSITION 2.3: Let G/K be a compact Riemannian symmetric space. Then
the Gelfand pair (G, K) satisfies condition (*).

Proof: Let (G,K) be a compact Riemannian symmetric pair. Let G be the
simply connected covering of G and p: G — G be the covering map of G. Let K =
p~1(K). Let M be a compact subgroup of G containing K such that ztKz~! ¢ M
for some x € G. We now claim that x € N(K)M. Let él,ég, ..., G be a finite
set of simple Lie subgroups of G, such that

G=é1XG~'2X-“XGm.

Now for each ¢, 1 < ¢ < m, there exists a compact subgroup K ; of G such that
G;/K; is a irreducible Riemannian symmetric space and

K”zﬁ’lx[{’gx---xﬁ’m.

Now let M = p~'(M). Then by Proposition 2.4, we have

M0=I§’1 x - x K, XGT_H X oo X Gy

for some r, 0 < r < m where M? is the connected component of identity in
M. Now let y = (z1,22,...,%,,) be in p~!(z). Since K is connected, we have
that yKy~! and K are contained in M°. This implies that xikix; ! ¢ K; for
1 < i < r and hence, since K is a connected Lie group, we have r; € N (f(l) for
1 < i < r. This implies that y € N(K)M and hence p~'(x) ¢ N(K)M. Thus,
x € p(N(K)M) = p(N(K))M ¢ N(K)M. This proves condition (*) for any
compact Riemannian symmetric space. i

Remark: The following gives an example of a Gelfand pair which does not satisfy
condition (*). Let Q, be the additive group of 2-adic integers and | - | be the
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2-adic norm on Q;. Let L = {z € @2 | |x| = 1}. Let K be the subgroup of
automorphisms generated by the automorphism x — —z. Let G be the semidirect
product of K and ;. Let z¢ € @y be such that xo € L but 2z¢g € L. Then
the semigroup of all K-biinvariant probability measures on G is isomorphic to
the semigroup of all symmetric probability measures on Qe. Thus, (G,K) is a
Gelfand pair. Let M be the compact subgroup of G generated by L and K.
Then, since 2z¢ € L, it is easy to see that zg normalizes M. Since N(K) = K
and xo € M, we get that N(K)M = M is a proper subgroup of N(M). Thus,
(G, K) is a Gelfand pair which does not satisfy condition (*).

We now present various types of Hungarian semigroups which are useful in
proving the heredity of Hungarian semigroups and limit theorems. For any subset
C of a semigroup P, let T be the set of all factors of elements of C. Let
¢: S — S* denote the canonical quotient map. A Hungarian semigroup S is
called stable if, for every compact set C' of §*, T¢ is compact. A Hungarian
semigroup S is called division compact if, for any two compact subsets C and
L of S, the set C/L = {s € S| thereexistsal € L,sl € C} is compact. It is
shown in [RS] that the semigroup of all compact-regular probability measures on
an abelian Hausdorff topological group G is a stable division compact Hungarian
semigroup (see Chapter 3, Theorem 1.1 of [RS]).

A Hungarian semigroup S is called strongly stable if, for any compact set
C of S, there is a compact set L of § such that ¢(T¢) = ¢(L). It should be
noted that strongly stable Hungarian semigroups are stable. A. Zempléni intro-
duced the notion of strongly stable Hungarian semigroups in [Ze]. It is shown
in [Ze] that for a locally compact first countable abelian group &, the semigroup
P(P(---(G)--)) is a strongly stable division compact uniformly Hungarian semi-
group with the Prohorov property. In [R], it is proved that P(P(---(S)---)) is a
strongly stable division compact uniformly Hungarian semigroup with the Pro-
horov property when S is the semigroup of K-biinvariant probability measures
on noncompact real reductive symmetric space. Here we prove a similar result
for certain Gelfand pairs.

In order to achieve Khinchin’s second and third theorems, that is, any anti-
indecomposable measure or any infinitesimal limit is infinitely divisible, Ruzsa
and Szekely introduced the concept of normable Hungarian semigroups. For
any s in a Hungarian semigroup S, define H(s) as the maximal idempotent
factor of s in S (see 22.11 of [RS] for the existence of H(s)). A normable
Hungarian semigroup is a Hungarian semigroup S satisfying the condition
that for every s € S that is not an associate of an idempotent, there exists a map
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Ag: Ty — [0, 00) such that
(p) As(ab) = Ag(a) + Ay(b)

for any a,b € T with ab € Ty, Ag(s) > 0 and A is continuous at H(s) where Ty
is the set of factors of s. Any map satisfying condition (p) is called a partial ho-
momorphism. It is proved [RS] that the semigroup of probability measures on
a locally compact abelian group is a normable Hungarian semigroup. Combining
the Kendall homomorphism of [G3] with the results in [R], we get that the semi-
group of probability measures on a noncompact reductive symmetric space is a
normable Hungarian semigroup. In the next sections we prove that the semigroup
of K-biinvariant probability measures on Gelfand pairs is also normable.

Another application of the normable stable Hungarian semigroup is the infinite
divisibility of an infinitesimal limit, that is, Khinchin’s third theorem. We will
answer this question affirmatively in section 8.

3. Factor compactness

The following lemma is an important tool in proving the factor compactness
which is useful in establishing the strong stability and limit theorems; see [DM],
[DR] and [Mc] for results on factor compactness for measures on general locally
compact groups.

LEMMA 3.1: Let N be a connected nilpotent Lie group and A be a group acting
on N by automorphisms such that the induced action on the Lie algebra of N is
semisimple. Let X be a subset of N such that for any sequence (x,,) in X, the
sequence

(zna(zyt))
is relatively compact for every o € A. Then for each x € X, there exists a, and
b, such that

T = bgag,
{bz}cex is relatively compact and a(a,) = a, forallz € X and a € A. In

other words, X is relatively compact in N/N# where N4 denotes the group of
all A-fixed points in N.

Proof: Let L(N) be the Lie algebra of N. We first consider the case when N is
abelian. There is no loss of generality in assuming that N is a vector group. Let
U be the subspace of L(N) consisting of all v € L(N) such that

da(v) =v
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for all @ € A. Then there exists an A-invariant subspace W of L(N) such that
LINy=UeagW.

Now for each x € X, there are a, and b, in the exponential image of U and W,
respectively, such that

r = bya,.
Suppose {b;}zecx is not relatively compact; then there exists a sequence (z,)
in X such that
b, = b, — o0.
Let Y,, € W be such that
exp(Yn) = bn-

Since exp is a diffeomorphism, we have
Y, >

and (da(Y,) — Y,) is relatively compact for all « € A and hence

Y, Y,
da(—n) S CRN )
Yall/ 1i¥all
for all @ € A, where || - || is the Euclidean norm on L(N). By passing to a

subsequence, if necessary we may assume that

Y,

__n_ —-Y
hail

and hence Y is a nonzero vector in W such that
da(Y)=Y

for all & € A. This is a contradiction. This proves that {b;}zex is relatively
compact.

We now consider the general case. The rest of the proof is based on induction
on the dimension of L(N). Suppose the dimension of L(N) is one; the result
follows from the abelian case. Now let Z be the center of N and L(Z) be the
Lie algebra of Z. Since the action of A on L(N) is semisimple, there exists an
A-invariant subspace W of L(N) such that

L(N)=L(Z) o W.
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Since N is nilpotent, Z(NV) is of positive dimension. Now applying the induction
hypothesis to N/Z(N) yields that, for each x € X, there are a,, b, and z, such
that

T =by0,2,,

where a,Z is fixed by all elements of A, z, is in Z for all x and {b,}.cx is a
relatively compact subset of N. Let exp be the exponential map of L(N) into
N. Since N is a connected nilpotent Lie group, by Theorem 3.6.1 of [V], exp is
an onto map. Since L(N) = L(Z)+ W, for each z € X, there exists a v, € L(Z)
and w; € W such that

exp(vm + ww) = Qg

and hence, since v, belongs to the center of the Lie algebra, by Corollary 2.13.3
of [V], we have

exp(wz )exp(v;) = ag

for all z € X. Thus, for each ¢ € X, replacing a, by azexp(—v,), we may assume
that
a, € exp(W)

forall x € X.
We now claim that a, is fixed by all elements of A. Let w, € W be such that
exp(w,) = a,. Since a, 7 is fixed by elements of A, we have

a(expy(wz + L(Z)) = exp,(we + L(Z))

for all @ € A, where exp, denotes the exponential map of the Lie group N/Z.
Since N is a connected nilpotent Lie group, exp, is a diffeomorphism of the Lie
algebra L{N)/L(Z) onto N/Z (see Theorem 3.6.2 of {V]). This implies that

a(wy + L(Z)) = w, + L(2)

for all @ € A and hence
a(wx) —wy € L(Z)

for all @ € A. Since w, € W, which is an A-invariant subspace, we have
a(wg) —w, e WNL(Z) = (0)
for all @ € A. This implies that a(w,) = w, for all @ € A and hence
alag) = ag

forala € Aand all z € X.
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Now for any sequence (z,,, ), and for each o € A4,

Tne(z, ") = by,az, zmna(z;l)a(a;:)a(b;:) = zwna(z;nl)bxna(b;:).
This implies that (2, a(z;!)) is relatively compact. Now the result follows from
the abelian case. |

LEMMA 3.2: Let U be a unipotent algebraic group and K be a compact group
of automorphisms on U. Let X be a subset of U such that for any sequence (x,,)
in X, the sequence (zna(z; 1)) is relatively compact. Then XUX is relatively
compact in U/UX where U¥ is the group of all K-fixed points of U.

Proof: Since U is a unipotent algebraic group, exponential is a diffeomorphism
of the Lie algebra of U onto U. Since K is compact, the induced action of K on
the Lie algebra of U is semisimple. Thus, one may prove the lemma by arguing
as in Lemma 3.1. |

The next result extends Lemma 3.1 to connected solvable groups with a faithful
representation and when the group of automorphisms is a compact connected

group.

LEMMA 3.3: Let G be a connected solvable Lie group with a faithful representa-
tion and K be a compact connected group of automorphisms of G. Suppose X is
a subset of G such that, for every sequence (z,,) in X, the sequence (z,a(xn)™")
is relatively compact for all « € K. Then for each x € X, there exist (b,) and
(ag) in G such that

x = bya,,

{bz | x € X} is relatively compact and a(a;) = a, for alla € K and allx € X.

Proof: Let G be a connected solvable Lie group with a faithful representation.
Then there exists a compact connected abelian subgroup T of G and a simply
connected normal subgroup H of G such that G = TH (see [Ho|). Let N be the
nilradical of H and H be the Lie algebra of H. Let #; be the Lie subalgebra of
H such that

Hi={veH|alv)=uv, foralla € K}.

Let H; be the connected Lie subgroup of G corresponding to the subalgebra ;.
Then H; is a simply connected closed subgroup of H (see Theorem 3.18.12 of
[V]) and a(h) = h for all h € H; and all @ € K. By Leptin’s Theorem (see
[BJR]), H = NH;. Now the lemma follows from Lemma 3.1. |
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We need the following lemmas which are quite useful in establishing the main
result of this section.

LEMMA 3.4: Let G be a locally compact second countable group and K be a
compact subgroup of G. Let (1,,) be a sequence of automorphisms of G. Suppose
(mn(wk)) is a relatively compact sequence in P(G). Then (r,(k)) is a relatively
compact sequence in G, for all k € K.

Proof:  Suppose (7,(ko)) is not relatively compact for some kg € K. Then
by passing to a subsequence, if necessary we may assume that (7,,(kg)) has no
convergent subsequence and 7,(wk) — p € P(G). Since each of 7,(wk) is an
idempotent, p is an idempotent and hence p = wys for some compact subgroup
M of G (see Theorem 1.2.10 of [He]). Since G is second countable, P(G) is
metrizable. Let (U;) be a decreasing sequence of compact neighbourhoods of M.
Since 7, {wg) — way, for each ¢ > 1, there exists an n; such that

1
wi(t ' (Ui) > 1 - 5

(see [P]) and we may assume that n; < n;4; for all § > 1. Let

B= U ﬂ Tn_il(Ui).

m=1i=m

Then B is a Borel subset of G and

o0

wg (G~ B) < Zg

=m

for all m > 1. This implies that wx(B) = 1. Let b € B. Then there exists an
m > 1 such that 7,,(b) € U; for all i > m. Since (U;) is a decreasing sequence,
we have 7,,,(b) € Uy, for all i > m and hence (7, (b)) is relatively compact for all
b € B. Let H be the set of all k¥ in K such that (r,,(k)) is relatively compact.
Then H is a co-null subgroup of K. By Proposition B.1 of [Zi], H = K. This
implies that (7,,(ko)) has a convergent subsequence. This is a contradiction.
Thus, we prove the lemma. |

We make the following observation which is essentially Lemma 2.1 of [DR].

LEMMA 3.5: Let V be a finite-dimensional algebra over a real or p-adic field.
Let (1,) be a sequence of algebra automorphisms of V. Then there exists a
subalgebra W of V such that

1. W ={w € V| (r(w)) is bounded} and
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2. if (1, (p)) is relatively compact for p € P(V), then p is supported on W.

Proof:  Since V is of finite dimension, there exists a vector subspace W of V
such that (7,(w)) is bounded if and only if w € W. Now let u € P(V) be
such that (7,(p)) is relatively compact. We now claim that the support of p is
contained in W3 in other words, for each v € S(u), (7,,(v)) is a bounded sequence.
Suppose, for some v € V, the sequence (7,(v)) is not bounded. Then there exists
a subsequence (7, ) of (7,,) such that

Tk, (v) > 00 and Tk, (1) = v

for some v € P(V). Then by Lemma 2.1 of [DR], there exists a subspace Wy of
V such that (7%, (w)) converges for all w € Wy and p is supported on Wy. This
implies, in particular, that (7, (v)) converges. This is a contradiction. Thus,
v € W. This proves the lemma. |

PROPOSITION 3.1: Let G be an almost connected Lie group and G° be a semi-
simple Lie group. Let K be a compact subgroup of G. Suppose (G,K) is a
Gelfand pair and S is the semigroup of all K-biinvariant probability measures on
G. Let (u,) be a relatively compact sequence in S and ()\,) be a sequence such
that, for each n > 1, A, is a factor of p,,. Then there exists a sequence (x,,) from
the center of G such that (x,A,) is relatively compact.

Proof:  Since (py) is relatively compact, by Theorem 1.2.21 of [He] there exists a
sequence (g, ) in G such that (g,An) is relatively compact. Let Ad be the adjoint
representation of G and let H = Ad(G). Then H is an algebraic semisimple
group. Thus, the center of H is finite and H ~ G/Z where Z is the center of
G. By Proposition 2.2, we have (H, KZ/Z) is also a Gelfand pair. Let M be a
maximal compact subgroup of H containing KZ/Z. Then (H, M) is a Gelfand
pair. Let p: G — H be the canonical quotient map. Then (p(un) * wpr) is
relatively compact and p(A,,) * wp is a factor of p(pn) * wp for all n > 1. Then
there exists a sequence (hy,) in H such that (h,war * p(A,)) and (p(An) * warhy)
are relatively compact (see [DM]). This implies, by Theorem 1.2.21 of [He], that
(hnwah; ) and (h; lwarhy,) are relatively compact. By Cartan decomposition
(see [W]), H = M AM for an abelian group A and hence, for each n > 1, there
exist a, € A and m,,m! € M such that h, = m,am]. This implies that
(anwmay!) and (a;'wpay) are relatively compact. By Lemma 3.4, (a,ka;?)
and (a,'ka,) are relatively compact for all k € M. Let p: H — GL(V) be
a faithful rational representation of H and W be the subalgebra of End (V)
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generated by H. For each n > 1, define 7,: W — W by 7,(w) = anwa;!.
Then by Lemma 3.5, there exists a subalgebra Wy of W such that (r,(w)) is
relatively compact if and only if w € Wy. Since A is abelian and (a,ka;') is
relatively compact for all K € M, we have M A C Wy. Since H = M AM, we have
H C Wy. Since H generates W, W = Wy and hence (7,,) is relatively compact
in End (W). Since (a;'kay) is relatively compact, we may prove in a similar
manner that (7;!) is relatively compact in End (W). Thus, () is relatively
compact. Since H is a semisimple algebraic group, the center of H is finite. This
implies that (a,) is relatively compact in H. This proves that (h,) is relatively
compact and hence (wpr * p(Ay)) is relatively compact. By Theorem 1.2.21 of
[He], (p(A\n)) is relatively compact. Since (gnA,) is relatively compact, once again
by Theorem 1.2.21 of [He|, (p(gn)) is relatively compact. Thus, there exists a
relatively compact sequence (b,) in G and a sequence (x,) from Z such that
gn = bpx, for all n > 1. Since (g, Ap) is relatively compact, (z,A,) is relatively
compact. [ |

We now prove the factor compactness for connected Gelfand pairs when K is
a maximal compact group.

ProposITION 3.2: Let G be a connected locally compact group and K be a
maximal compact subgroup of G. Suppose (G, K) is a Gelfand pair and S is the
semigroup of K-biinvariant probability measures on G. Let (i) be a relatively
compact sequence in S and (M) be a sequence in S such that, for each n > 1,
An is a factor of p,,. Then there exists a sequence (xy) in G such that (z,\,)
is relatively compact and the sequence (x,) is relatively compact in G/N(K),
where N(K) is the normalizer of K in G.

Proof: Since G is a connected group, there exists a compact normal subgroup
M of G such that G/M is a connected Lie group. Since K is a maximal compact
subgroup, M is contained in K. Thus, by replacing G by G/M, we may assume
that G is a connected Lie group.

Let (¢n) be a sequence of K-biinvariant probability measures on G and (\,)
be a sequence in S such that, for each n > 1, A, is a factor of u,. Let R
be the solvable radical of G. Then G/R is a connected semisimple Lie group.
Then there exists a sequence (x,) in G such that (x,)\,) is relatively compact
and, by Proposition 3.1, (z,) is relatively compact in (G/R)/Z(G/R). This
implies that there exists a sequence (g, ) in G such that z,, = g,g, for alln > 1,
gnR € Z(G/R) and (g,) is relatively compact. This implies that (g,\,) is
relatively compact and g,gg7'g™' € R for all g € G and all n > 1. Since A,
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is K-biinvariant, we have that (gnwr g, 1g,An) is relatively compact and hence,
by Theorem 1.2.21 of [He], (gnwig;!) is relatively compact. By Lemma 3.4, we
have (gn,kg,;!) is relatively compact for all k € K. Thus, (gn\») and for k € K,
(gnkg; 1) are relatively compact. Let H = Ad(G). Then H is a connected Lie
group with a finite-dimensional faithful representation. Let S be the solvable
radical of H. Then S contains Ad (R). Let h, = Ad(g,). Then h,hh th=1 € S
for all h € H. This implies that (h,S) is contained in the center of H/S which
is a semisimple algebraic group and hence (h,S) is relatively compact. There
exists a relatively compact sequence (c,,) in H such that hy, = ¢, ¥y, and for some
yn € S for all n > 1. Since (c,) is relatively compact, we have y,ky,, ! is relatively
compact for all k € Ad(K). This implies that the sequence (y,ky;'k~!) in S
is relatively compact in S for all k¥ € Ad(K). Now by Lemma 3.3, there exists
a relatively compact sequence (b,) in S and a sequence (a,) in S such that
Yn = bpa, and ka, k™! = a, for all k € Ad(K) and all n > 1. Thus, h, = cpbnan
where (c,b,) is relatively compact and ka,k~! = a, for all k € Ad(K) and all
n > 1. This implies that there exists a relatively compact sequence (d,) in G
and a sequence (u,) in G such that

T, =dyu, and kunk_lu,jl €Z

for all n > 1 and all k € K where Z is the center of G. Now for each n > 1, the
map k +» ku,k~lu_! is a continuous homomorphism of K into Z. Since K is a
maximal compact subgroup, we get that ku,k~'u;! € K and hence u, € N(K)
for all n > 1. Thus, (z,) is relatively compact in G/N(K). |

We now prove the factor compactness result for certain almost connected
Gelfand pairs. To do this we need the following results on the structure of Gelfand
pairs. The following proves that Gelfand pair is invariant under conjugation.

ProposiTION 3.3: Let (G, K) be a Gelfand pair and T be an automorphism of
G. Then (G, 7(K)) is also a Gelfand pair. [ |

Proof: Let A and p be 7(K)-biinvariant probability measures. Define X =
771(A) and g/ = 77!(p). Then

WK/\,U)K = wKT_l(/\)(JJK = T_I(WT(K)AUJT(K)) = /\,.

This shows that ) and u' are K-biinvariant probability measures on G. Since
(G, K) is a Gelfand pair, we have

M =rXN)r() =T\W) =r(W'N) = pA.
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This proves that (G, 7(K)) is also a Gelfand pair. |

PROPOSITION 3.4: Let G be an almost connected Lie group and (G, K) be a
Gelfand pair. Let G° be the connected component of identity in G and Ad be
the adjoint representation of G on its Lie algebra. Suppose Ad(GP) is an almost
algebraic group. Let S be the solvable radical of Ad(G®). Then S is type R, that
is, S is a compact extension of a connected nilpotent normal subgroup of Ad(G).

Proof: Since S is a solvable almost algebraic group, there exists a compact
abelian subgroup T and a diagonalizable almost algebraic group D such that
S = TDU where U is the unipotent radical of Ad(G). To prove the lemma, it
is enough to prove that D centralizes U. Now let u € U and (d,) is a sequence
in D such that d,ud;! — e. Let M be a maximal compact subgroup of Ad (G)
containing T. Since Ad (K) is contained in a conjugate of M, by Proposition
3.3, we get that (Ad(G),M) is also a Gelfand pair. Now for each n > 1, d,u =

cpuc,dyel for some ¢y, ¢, and ¢, in M. This implies that

dpud; 'd,c~1d 1t = cpud,

for all n > 1. Since (c,) and (¢},) are relatively compact, by passing to a subse-
quence, we may assume that ¢, — ¢, ¢/, = ¢’ and d,ud, ' — e. This implies that
dnci=ld ! — cuc'. Let R be the reductive Levi subgroup of Ad (G°) containing
MP. Then it is easy to see that R contains D and hence « € RM. Since RM is
a finite extension of a reductive group, it does not contain any unipotent normal
subgroup but U N RM is a unipotent normal subgroup of RM and hence u = e.
Thus, D centralizes U. This proves the proposition. n

We now prove the factor compactness.

PROPOSITION 3.5: Let G be an almost connected group and K be a maximal
compact subgroup of G. Suppose (G, K) is a Gelfand pair and there exists a
compact normal subgroup M of G such that G/M is a Lie group and Ad(G/M)
is an almost algebraic group. Let S be the semigroup of K -biinvariant probability
measures on G. Let (j1,) be a relatively compact sequence in S and (\,) be a
sequence such that, for each n > 1, A, is a factor of i, in S. Then there exists
a sequence (r,) in N(K) such that (z,),) is relatively compact.

Proof: Since K is a maximal compact subgroup of G, M is contained in K.
Since the considered measures are all K-biinvariant, we may assume that G is
a Lie group. Let R be the solvable radical of G°, the connected component
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of identity in G. Then R is normal in G and G/R is a finite extension of a
connected semisimple Lie group. Let p: G — G/R be the canonical quotient
map. Since p()\,) is a factor of p(u,,) for all n > 1 and (u,) is relatively compact,
by Proposition 3.1, there exists a sequence (2,) in G such that (z,A,) is relatively
compact and z,97;'¢g™! € R for all g € G. Since G is almost connected, we
may assume that z, € G° for all n > 1. Since A, is K-biinvariant, we have
that (znwiz, 'TnA,) is relatively compact and hence, by Theorem 1.2.21 of [He],
(zpwrr;t) is relatively compact. By Lemma 3.4, (z,kz;!) is relatively compact.
Let ¢: G — G/Z ~ Ad(G) be the natural map and S be the solvable radical
of Ad(G®). Then for g, = ¥(z,) for all n > 1, we have g,zg;'z~! € Ad(R)
for all n > 1 and (gnkg;,!) is relatively compact. Since center of Ad(G%)/S is
finite, there exists a relatively compact sequence (d,) and a sequence (yn) in
S such that g, = dpy,. This implies that (y,ky, k1) is relatively compact
for all k € K. By Proposition 3.4, S is a compact extension of its nilradical.
Thus, there exists a sequence u, in the nilradical, say N of S such that (ynu,?')
is relatively compact and hence (u,ku;'k~1) is relatively compact. By Lemma
3.1, there exists a bounded sequence (b, ) and sequence (zy,) such that u, = b,a,
and ka,k~! = a, for all n > 1. Thus, there exists a bounded sequence (c,) and
a sequence (h,) such that

gn = crh, and khnk_lh;;l =e

for all n > 1 and all k € Ad(K). This implies that there exists a sequence (z,) in
G such that (z,),) is relatively compact and z,kz;'k € Z for all n > 1 where
Z is the center of G. Since K is a maximal compact subgroup of G, we get that
2y K271 C K for all n > 1, since K is a Lie group, z,Kz,;! = K for all n > 1.
Thus, (2,A,) is relatively compact and z, € N(K). |

4. Khinchin’s first theorem for connected Gelfand pairs

In this section we prove Khinchin’s factorization theorem for Gelfand pairs when
G is a connected locally compact group. We now look at shift compactness in a
general Hausdorff commutative topological semigroup. Let S be any commuta-
tive Hausdorff topological semigroup and X C S. Then we say that
(1) X is weakly shift compact if, for every sequence (z;) in X, there is a
relatively compact sequence (y;) in S such that z; is an associate of y;.
(2) X is strongly shift compact if there exists a compact set ¥ of S such
that every element of X is an associate of some element of Y.
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We now use a version of an argument in Section 3.6 of [RS] to prove the
following lemma,; it proves the converse of Statement 21.8 of Chapter 2 of [RS]
in the case of the semigroup of probability measures on Gelfand pairs.

LEMMA 4.1: Let G be a locally compact a-compact group and S be a closed
abelian subsemigroup of probability measures on G satisfying (H-2). Suppose
the group of units in S is exactly equal to {gn | g € H} for some subgroup H of
G where 7 is the identity in S. Then weakly shift compact subsets of S are also
strongly shift compact.

Proof: Let X be a weakly shift compact subset of S. For any p € S and any
compact subset M of G, let

C(; M) = sup p(zM).

z€H
We first claim that for any given 0 < @ < 1, there exists a compact subset M
of G such that C(u; M) > 6 for all 4 € X. Suppose, for some 0 < § < 1 and
for each compact subset M of G, there exists 4 € X such that C(u; M) < 6.
Let My C My C ---M,, C --- be a sequence of compact sets in G such that
M,, is contained in the interior of M,4; and G = |J M,, (this is possible because
G is locally compact o-compact). Then for each n there exists a p, € X such
that C(pn; My) < 6. Since the sequence (py) is in X, there exists a relatively
compact sequence (Ap) in S such that A, ~ p,. Since S is Hungarian, there
exists a sequence (x,) in H such that (x,p,) is relatively compact and hence
there is a compact subset M of G such that p,(z;;' M) > 6 for all n. This implies
that C(pt,; M) > 6 for all n. Since M is compact, there exists an M, such that
M < M, and hence C(pun; M,) > 0. This is a contradiction. Thus, our claim is
proved.

Let M be a compact subset of G such that C(u; M) > 1/2 for all p € X. Let
B ={)A€ S|¢A) € ¢X)and M(M) > 1/2}. We claim that B is relatively
compact and ¢(X) C ¢(B). Let § > 1/2. Then there exists a compact set L of G
such that C(p; L) > @ forallp € X. Let A € B. Then A\(M) > 1/2 and A(uL) > 0
for some u € H. This implies that v € ML~! and hence A(ML~'L) > 6. This
shows that B is relatively compact. Suppose p € X; then there exists u € H
such that up(M) > 1/2. This implies that up € B. Thus, ¢(X) C ¢(B). Now
let Y = B. Then Y is compact and every element of X is an associate of some
element of Y. Thus, X is strongly shift compact. |

The following result is a useful lemma to prove (H-3) and strong stability.
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LeEMMA 4.2: Let G be a locally compact second countable o-compact group and
(G, K) be a Gelfand pair satisfying condition (*). Let S be the semigroup of all
K -biinvariant probability measures on G. Suppose C is a compact subset of S
such that T¢ is weakly shift compact. Then ¢(T¢) is compact where ¢: S — S*
is the natural map.

Proof: Let C be a compact subset, of S such that T is weakly shift compact. Let
N{H) denote the normalizer of H for any subgroup H of G. By the hypothesis
S is a commutative subsemigroup of probability measures on G satisfying (H-2)
and the group of units in S is N(K)wg. Thus, by Lemma 4.1, T¢ is strongly
shift compact. This implies that ¢(T¢) C ¢(X) for some compact subset X of
S, in particular, ¢(T¢) is relatively compact.

We now claim that ¢(T¢) is closed. Let (A,) be a sequence in T and ¢(A,) —
s € §*. Since T¢ is weakly shift compact and, by passing to a subsequence, we
may assume that there exists a sequence (u,) in N(K) such that u,A, = A € S.
Then

and hence ¢(\) = s. Since u, € N(K), for all n > 1, u,\, is also in T¢ for all
n > 1; that is, there exists u, € C such that

(i) UpAp * Vp = fin

for all n > 1 and (vp,) is a sequence in S. By Theorem 1.2.5 of [He], (v,) is
relatively compact and hence, since C is compact, by passing to a subsequence,
we may assume that y, = p € C and v, = v € S. By (i) and (ii), we get that
A*v = p. This proves that A € T¢ and hence s € ¢(T¢). Thus, ¢(T¢) is a
closed set. This proves that for any compact set C, such that T¢ is weakly shift
compact, ¢(T¢) is compact in S*. ]

We now prove the main result of this section.

THEOREM 4.1: Let G be a connected locally compact group and (G,K) be a
Gelfand pair. Let S be the semigroup of all K-biinvariant probability measures
on G. Suppose the pair (G, K) satisfies condition (*). Then S is a strongly stable
Hungarian semigroup and hence Khinchin’s factorization theorem holds for the
semigroup S.

Proof: It is very routine to verify condition (H-1). By Lemma 2.2, (H-2) is
satisfied if and only if condition (*) is satisfied. We now claim that for any
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compact set C, ¢(T¢) is compact. Let N(H) denote the normalizer of H in G,
for any closed subgroup H of the group G. Since G is a connected group, there
exists a compact normal subgroup M of G such that G/M is a Lie group. Let
(itn) be a sequence in S and (\,) be a sequence such that A, is a factor of pu,
in S and (py) is relatively compact. Let L be a maximal compact subgroup of
G containing K and M. Then the semigroup S; of all L-biinvariant probability
measures on G is a commutative subsemigroup of P(G). Since A, is a factor of
In, we have that A, xwy, is a factor of u, * wy. By Proposition 3.2, there exists
a sequence (x,) such that (z, A, * wr) is relatively compact and z,, € N(L) for
all n > 1. By Theorem 1.2.15 of [He], (z,A) is relatively compact. Now for
x € N(L), we have xKz~! C L. Since (G, K) satisfies condition (*), we get that
r € LN(K). Thus, there exist sequences (b,) and (u,) in G such that

Tp = bnuna

where (by,) is relatively compact and u, € N(K) for all n > 1. This implies that
{unAn) is relatively compact and u, € N(K} for all n. By Proposition 2.3, we
have A, and u,A, are associates in S for all n. Thus, for any relatively compact
set A of S, the set of factor Ty of N is weakly shift compact. Thus, by Lemma
4.2, for any compact subset C of S, ¢(T¢) is compact.

We now verify condition (H-3). Let x € S* and p € S be such that ¢(u) = x.
Suppose s € §* is a factor of z. Then st = z for somet € S. Let A and v in S be
such that ¢()\) = s and ¢(v) = t. Then Av = up for some unit « in S. Thus, A
is a factor of y1 in S. This implies that T, = ¢(T,) and hence, by Lemma 4.2, T,
is compact. Thus, (H-3) is verified. Hence S is a Hungarian semigroup. Since G
is a second countable group, S is metrizable and hence Khinchin’s factorization
theorem holds for S (see [RS]).

We now prove that S is strongly stable. Let C be any compact set in S. Then
by Lemma 4.2, T¢ is strongly shift compact and ¢(T¢) is a compact set. Let X
be a compact set in .S such that

(1) ¢(Te) C ¢(X).

Let

Y = X n¢ N (g(T0)).
Then Y is a compact subset of S and ¢(Y) C ¢(T¢). Let A € Te. Then by (i),
there exists a v € X such that

o(v) = d(A)
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and hence v € Y. This proves that ¢(T¢) = #(Y'). Thus, S is a strongly stable
Hungarian semigroup. ]

We now prove Khinchin’s Theorem for certain almost connected Gelfand pairs.

THEOREM 4.2: Let G be an almost connected second countable group and
contain a compact normal subgroup M such that G/M is a Lie group and
Ad(G/M) is an almost algebraic group. Suppose (G,K) is a Gelfand pair
satisfying condition (%) and S is the semigroup of K-biinvariant probability
measures on G. Then S is a strongly stable Hungarian semigroup. Also, S is
metrizable and the Khinchin’s factorization theorem holds for S.

Proof: The proof of (H-1) is trivial and, since (G, K) satisfies condition (*),
(H-2) is verified. Now let C be a compact set and T be the set of factors of C.
We now claim that ¢(T¢) is compact. Let (u,) be a relatively compact sequence
and, for each n > 1, ), is a factor of u,,. Let L be a maximal compact subgroup
of G containing K and M. Then (u, *wy) is relatively compact and A, * wy, is
a factor of u, * wy. By Proposition 3.2, there exists a sequence (z,) in N(L)
such that (z,An * wr) is relatively compact and hence, by Theorem 1.2.15 of
[He], (zy, * Ay) is relatively compact. Since (G, K) satisfies condition (*), we have
N(L) = LN(K). Thus, z,L = g,L for some g, € N(K), for all n > 1. Thus,
(gnAn) is relatively compact. This proves that T¢ is weakly shift compact. By
Lemma 4.2, ¢(T¢) is compact. Now (H-3) and strong stability may be proved
by arguing as in Theorem 4.1. ]

As an application of strongly stable Hungarian semigroups we obtain the
following

COROLLARY 4.1: Let (G,K) be a Gelfand pair and S be the semigroup of
probability measures on G that are K-biinvariant. Let T = P(P(---(S)--+)).
Suppose the pair (G, K) satisfies condition () and
(a) G and K are as in Theorem 4.1
OR
(b) G and K are as in Theorem 4.2
OR
(c) G is a compact metric group.
Then we have the following:
1. T is a strongly stable division compact uniformly Hungarian metric
semigroup with the Prohorov property and consequently Khinchin’s
factorization theorem holds for T';
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2. the set of infinitely divisible elements in T is a closed set;
3. the set of indecomposable elements in T and the set of anti-indecomposable
elements in T are of type G5 (that is, a countable intersection of open sets).

Proof: By Theorem 4.1 and Theorem 4.2 we get that S is a strongly stable
Hungarian semigroup. The division compactness and the Prohorov property of
S is a consequence of Theorem 2.1 of Chapter 3 and Theorem 6.7 of Chapter 2
of [P].

We now prove that S is uniformly Hungarian. Let A and B be subsets of S
and v; and vs be in S such that for every A € A there exists a 4 € B such that
A=wvip and u = . For any A € S, define

M) ={g€Glgr=X=Ag}
then by Theorem 1.2.4 of [He], M () is a compact group and
wM(A) xA=A=A *wM()\),

also
v¥AdA=A=dxv & Sy M)

for any v € P(G) (see Theorem 1.27 of [He]). Let M = (,c4 M()). Then M
contains K and M(v;) for ¢ = 1,2. Now by replacing v; by v; x was for i = 1,2,
if necessary we may assume that M (v;) = M for i = 1,2. Now for any A € A,
there exists a u € B such that A = vy and 2 = 9\ and hence A = vyvopu. Thus,
we have

S(l/l)S(l/Q) C M(/\)
for all A € A. This implies that S(v1)S(ve) C M. Now arguing as in Lemma, 2.1,
we get that
Vi = giwm
for some g; € N(M) and for all i = 1,2. Since M contains K and (G, K) satisfies
condition (*), we have g; € N(K)M. This implies that

Vi = Tiwm

for some x; € N(K) and for all i = 1,2. Thus, since wy, is an idempotent factor
of each element of A, for each element A\ € A, there exists a ¢ € B such that
A = xp for 1 € N(K) and hence pr = 27"\, This proves that S is a uniformly
Hungarian semigroup. Thus, we have proved that S has all the properties in (1).
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Now by applying Theorem 2 of {Ze|, we get that the semigroup T also has all
these properties and hence the second part of (1) follows from Section 2.23 of
[RS]. This proves (1) and the results (2) and (3) follow from (1) and Theorem
26.40f [RS].  ®

5. Khinchin’s Theorems for certain Gelfand pairs

We first prove the analogue of Theorem 4.1 for a class of groups which includes
discrete groups.

PROPOSITION 5.1: Let G be a discrete group and (G, K) be a Gelfand pair. Let
S be the semigroup of all K-biinvariant probability measures on G. Then the
factor set of a relatively compact set is weakly shift compact. In fact, for every
sequence (A,) in Tc, there exists a sequence (x,) from Z(K) such that (xnAy)
is relatively compact, where C is a relatively compact set and Ty is the set of
factors of C.

Proof: Let C be a relatively compact set in S and {(z,,) be a sequence in C. Let
(M) be a sequence in S such that A, is a factor of u, for all n > 1. Then by
Theorem 1.2.21 of [He], there exists a sequence (z,,) such that (xz,\,) is relatively
compact. This implies that (z,wkx,; ') is relatively compact. Since K is finite, we
have that (z,,kx;; 1) is relatively compact for allk € K. Let K = {ky,k2,-.., kn}-
Then for i = 1,2,...,m, (z,k;x,) is finite. This implies that there exists a
subsequence (z, ;) such that (xmk,a:;i) is a constant sequence for 7 = 1. Now
for i + 1, let (zp, ;+1) be a subsequence of (zy, ;) such that (zp i+1ki+1%n,i41) I8
a constant sequence. Thus, for k£ = |K|, we have that (xn,kkix;}c) is a constant
sequence for all k; € K. Thus (z,), in fact every subsequence of (z,), has a
relatively compact subsequence in G/Z(K). This shows that (x,) is relatively
compact in G/Z(K). Thus the set of factors of a relatively compact set C of S
is weakly shift compact in S. [

COROLLARY 5.1: Let G be a locally compact second countable group admitting
a compact open normal subgroup U and (G, K) be a Gelfand pair. Let S be
the semigroup of all K-biinvariant probability measures on G. Suppose (G, K)
satisfies condition (*). Then the set of factors of a relatively compact set C of S
is weakly shift compact in S.

Proof: Tt is easy to see that G is o-compact. Let p: G — G/U be the canonical
quotient map. Since U is an open normal subgroup, G/U is discrete. Let M =
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UK = KU. Then (G/U/M/U) is a Gelfand pair. Let (u,) be a relatively
compact sequence in S and (\,) be a sequence in S such that, for each n > 1,
An I8 a factor of g, in S. Then (p(u,)) is relatively compact and p(A;) is a
factor of p(u,) for all n > 1. By Proposition 5.1, there exists a sequence (g,)
in G such that (p(gn)\.) is relatively compact and, for every n > 1, p(g,) €
Z(M/U), the centralizer of M in G/U. In particular, for every n > 1, g, €
N(M), the normalizer of M in G. Since (G, K) satisfies condition (*), we have
N(M) = N(R)M. Thus, there exists a sequence (&) in N(K) such that (z,A,)
is relatively compact. This proves that T is weakly shift compact when C is
relatively compact. |

The following proves the Khinchin’s Theorem for Gelfand pairs considered in
the above corollary.

THEOREM 5.1: Let G be a locally compact second countable group admitting
a compact open normal subgroup and (G, K) be a Gelfand pair. Suppose the
Gelfand pair (G, K) satisfies condition (*). Let S be the semigroup of all K-
biinvariant probability measures on G. Then we have the following:
1. the semigroup S is a division compact strongly stable uniformly Hungarian
semigroup.
2. S is first countable and hence Khinchin’s factorization theorem holds for
S.
3. T=P(P(---(P(S)) - --)) satisfies (1), (2) and (3) of Corollary 4.1.

Proof: By Corollary 5.1 and by Lemma 4.2, ¢(T¢) is compact for any compact
subset C' of S. This proves that S satisfies (H-3). The verification (H-1) is
trivial and (H-2) follows because (G, K) satisfies condition (*). Thus, S is a
first countable Hungarian semigroup and hence Khinchin’s factorization theorem
holds for S. By arguing as in Theorem 4.1 and Corollary 4.1, the remaining parts
of the theorem can be proved. ]

Let G be a locally compact group and K be a compact subgroup of G. Suppose
X = G/K has a G-invariant metric. Then we say that the action of G on X is
doubly transitive or G acts doubly transitively on X, if d(z,y) = d(z', ¢)
implies that there exists a ¢ € G such that gz = gz’ and gy = gy’ (it is also
known as two-point homogeneous). We now introduce a class of Gelfand pairs
that generalizes doubly transitive case. A pair (G, K) consisting of a locally
compact group G and a compact subgroup K of G is called a symmetric pair
if g7! € KgK for all g € G. It is known that if G acts doubly transitively on
G/K, then (G, K) is a symmetric pair (see [F]). We now prove that such pairs are
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Gelfand and the semigroup of K-biinvariant probability measures on such pairs
forms a strongly stable Hungarian semigroup. We first prove factor compactness
for such Gelfand pairs.

PROPOSITION 5.2: Let (G, K) be a symmetric pair. Then (G, K) is Gelfand.
Let S be the semigroup of all K-biinvariant probability measures on GG. Suppose
G is 2-root compact (see [He]). Then for any compact subset C of S, the set of
factors is a compact set in S.

Proof: Since all measures in S are symmetric and S is a semigroup, it is easy
to see that (G, K) is a Gelfand pair.

Let () be a relatively compact sequence in S and (A,) be a sequence in S
such that, for each n > 1, A, is a factor of u, in S. Then by Theorem 1.2.21 of
[He], there exists a sequence (z,) in G such that (z,),) is relatively compact.
Since )\, is symmetric, we have (A\,z;;!) is relatively compact and hence (A2) is
relatively compact. Since G is 2-root compact, (A,) is relatively compact (see
[He]). Let C be a compact set in S and (A,) be a sequence in T such that
An = X € S. Then there exists a sequence (p,) in C and sequence (v,) in S
such that p, = A, = vpA, for all n > 1. Since C is compact, by Theorem
1.2.21 of [He], (1) is relatively compact. By passing to a subsequence, we may
assume that g, — p € C and v, » v € S. Then since A, — A € 5, we have
# = Av = vA. Thus, A € T¢. This proves that T¢ is closed. Thus, the set of
factors of a compact set is compact. |

We now prove Khinchin’s Theorem for symmetric (Gelfand) pairs.

THEOREM 5.2: Let (G, K) be a symmetric pair. Let S be the semigroup of all
K -biinvariant probability measures on G. Suppose G is 2-root compact and the
pair (G, K) satisfies condition (*). Then the conclusions of Theorem 5.1 hold for
S.

Proof: Since (H-1) is verified easily and (H-2) follows from the fact that (G, K)
satisfies condition (*). Since G is 2-root compact, by Proposition 5.2, for each
compact set C of S, the set of factors T, is also a compact set. Thus, (H-3) and
strong stability are easily verified. The rest may be proved as in Theorem 5.1.
|

Remark: M. Voit has proved Khinchin’s Theorems for measures on symmetric
hypergroups (which includes all symmetric pairs) satisfying a condition D (see
Theorem 5.4.14 and Theorem 5.4.12 of [BH] and 5.4.2 of [BH] for the definition
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of D). Here we prove all three Khinchin’s Theorems for all symmetric Gelfand
pairs when G is 2-root compact and our approach is different and quite simple.

We would also like to mention [Hel] where H. Heyer proves Khinchin’s
Theorems for certain Gelfand pairs.

6. Khinchin’s Theorems for p-adic Gelfand pairs

We now prove the analogue of Theorem 4.1 for Zariski-connected p-adic algebraic
groups.

We first establish the following result that is useful in proving the factor
compactness for Gelfand pairs considered in this section.

ProposiTiON 6.1: Let G be a Zariski-connected p-adic algebraic group and K
be a compact subgroup of G. Let (u,) be a relatively compact sequence of K-
biinvariant probability measures on G and (\,) be a sequence of K-biinvariant
probability measures on G such that A, Is a factor of p,, for alln > 1. Suppose
(G, K) is a Gelfand pair. Then there exists a sequence (x,) in Z(G) such that
(xnAn) is relatively compact.

Proof: Since G is totally disconnected and K is a compact group, there exists
a compact open subgroup M of G containing K. Since, for a sequence (z,) in
Z(G), (zpwpr * Ay) is relatively compact implies (z,Ay,) is relatively compact and
wpm * Ay, 18 a factor of was * p,, for all n > 1, we may assume that K is a compact
open subgroup of G. Since A, is a two-sided factor of u,, there exists a sequence
(zn) in G such that (z,A,) and (A\,x,) are relatively compact.

We now claim that (x,) is relatively compact in G/Z(G). Since ()\,) is
K-biinvariant, we get that (zpwiz;z,An) and (A zpwir;lx,) are relatively
compact. By Theorem 1.2.21 of [He], (z,wrz,!) and (z;'wkx,) are relatively
compact. By Lemma 3.4, for each k € K, the sequence, (z,kz;') and (z; 'kx,)
are relatively compact. Thus, the group

H = {h € H| (xnhx;') is bounded}

is an open subgroup of G. Since G is a Zariski-connected algebraic group, it has
a finite-dimensional faithful rational representation. Let p: G — GL(V) be a
rational faithful representation of G. Let W be the subalgebra generated by G in
End(V'). Now for n > 1, define 7,,: W — W by r,(w) = zwz,;! for all w € W.
Then 7, € GL(W) and (7,(k)) is relatively compact for all k € K. Then by
Lemma 3.5, there exists a subalgebra of W, of W containing H and (7,(w)) is
relatively compact in W for all w € Wy. Since G N W, is an algebraic subgroup,
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we get that Wy = W. Thus, (7,) is relatively compact in End(V). Similarly,
we may prove that (7,;!) is also relatively compact in End(V'). This proves that
(1) is relatively compact in GL(W). Since G is an algebraic group, we get that
(zp) is relatively compact in G/Z(G). ]

We now prove Khinchin’s Theorem.

THEOREM 6.1: Let G be a Zariski-connected p-adic algebraic group. Suppose
(G,K) is a Gelfand pair satisfying condition (*). Let S be the semigroup of
K-biinvariant probability measures on G. Then (1), (2) and (3) of Theorem 5.1
hold for S.

Proof: The verification of (H-1) is quite easy. The verification of (H-2) follows
from the assumption that (G, K') satisfies condition (*). The rest of the proof is
quite similar to the proof of Theorem 4.1 and the proof of Corollary 4.1, so we
omit the details. |

We now consider compact extension of unipotent algebraic groups. We first,
as usual, establish the factor compactness.

PROPOSITION 6.2: Let G be a compact extension of a normal unipotent algebraic
group. Let K be a compact subgroup of G. Let (1) be a relatively compact
sequence of K-biinvariant probability measures and (),) be a sequence of K-
biinvariant probability measures such that, for each n > 1, A, Is a factor of
ln. Then there exists a sequence (x,) in Z(K) such that (zp\,) is relatively
compact.

Proof: Since ), is a factor of u, for all n > 1 and (\,;) is relatively compact,
there exists a sequence (g,) in G such that (g, Ay) is relatively compact (see [P]).
Let U be a unipotent normal subgroup of G, such that G/U is compact. This
implies that g, = unc, and u, € U for all n > 1 and (e,) is relatively compact.
Since (gnAn) is relatively compact, (unA,) is relatively compact. Since A, is
K -biinvariant,
unwKu,jlun/\n = UpAp

for all n > 1. Thus, (u,wku; ) is relatively compact (see Theorem of [He]). Now
from Lemma 3.4, for each k € K, (u,ku;!) is relatively compact. This implies

that, for each k € K, (unku; k1) is relatively compact. Now applying Lemma,
3.2, there exists a bounded sequence (b,,) in U such that

Up = bpr, and x, € Z(RK)
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for all n > 1. This proves the proposition. |

We now prove Khinchin’s factorization theorem when G is a compact extension
of a unipotent group.

THEOREM 6.2: Let G be a compact extension of a unipotent algebraic group and
(G, K) be a Gelfand pair. Let S be the semigroup of all K-biinvariant probability
measures on G. Suppose (G, K) satisfies condition (*). Then conclusions (1), (2)
and (3) of Theorem 5.1 hold for S.

Proof: Using Proposition 6.2, one may prove the result by arguing as in Theorem
6.1. ]

Remark: In Theorem 6.2, if G is replaced by a compact extension of a connected
nilpotent (real) Lie group, the conclusions are still valid.

7. Limit theorems and embedding

Let NV be any set in a topological semigroup S. Then
RN) = {V* | v e N,k < n}.

In proving limit theorems and embedding of probability measures, we need the
compactness of the root set R(N); see [S1] and [Te] for results on limit theorems
for probability measures on general locally compact groups. An element s of a
Hungarian semigroup S is said to be weakly infinitely divisible if, for each
n > 1, there exists an s, in .S such that s} is an associate of s and s is said to be
infinitely divisible if, for each n > 1, there exists an s, in S such that s = s.
An element s of a Hungarian semigroup S is said to be embeddable in a con-
tinuous convolution semigroup in S if there exists a continuous homomorphism
t — s¢ from [0,00) into S such that s; = s.

LEMMA 7.1: Let G be a locally compact second countable group and K be a com-
pact subgroup of G such that (G, K') is a Gelfand pair. Let S be the semigroup
of K-biinvariant probability measures on G. Suppose N(K) is a strongly root
compact group where N(K') is the normalizer of K in G and R(N) is strongly
shift compact. Then R(N') is relatively compact in S.

Proof:  Since R(N) is strongly shift compact, we get that, for each v € R(N),
there exists a unit and hence, by Proposition 2.3, an element x(v) € N(K) such
that {z(v)v | v € R(N)} is relatively compact. Let e € (0,31). Let v € R(N)
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be such that v™ € A. Then for each 1 < k < n there exists a z;, € N(K) and
a compact set C(¢) such that v*(Cxy) > 1 — €. Replacing C by KCK, which is
again a compact set containing C, if necessary we may assume that zC = Cx,
for all z € N(K). Now for any 1 < k,l,k+1<n,

VA (CaCxy) > vF(Cap ) (Cy) > (1~ €)?
and hence
VY (CxCoyNCrryy) > VT (CarCx)) =" (G N Capqt) > (1—€)2—€ > 1-3e.

Since 0 < e < %,
CxCxi N Cxpqr # 0.

This implies that
CCzrziN ka+l # .

Thus, we may choose {z1,22,...,Z,}, a set of n points in N(K), such that for
any 1 <k, LLk+1<n,

Tpmiz), € CCCTL
Let D = CCC~* N N(K). Then since D ¢ DDD™!,
TkT1Tyy, € DDD™' # 0
and hence, since zD = Dz for all z € N(K), we have
DxyDz; N\ Dxyyy # 0

for all 1 < k,l,k+1 < n. Since N(K) is strongly root compact, there exists a
compact set B such that x; € B, for all 1 < i < n. This implies that »(CB) >
v(Cz1) > 1 —e. By Prohorov’s Theorem we deduce that R(N) is relatively
compact. | |

Remark: Suppose G is a Lie group. Then N(K) is a strongly root compact
group which may be seen as follows: Since (G, K) is a Gelfand pair, N(K)/K
is a commutative Lie group and hence, by 3.1.12 and 3.1.13 of [He], N(K) is a
strongly root compact group.

We now prove the functional limit theorem.
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THEOREM 7.1: Let (G,K) be a Gelfand pair and G is a locally compact o-
compact second countable group. Suppose the semigroup S of all K-biinvariant
probability measures on G is strongly stable and the normalizer N(K) of K in
G is strongly root compact. Let (v,) be a sequence in S such that vf» — p as
k, — oo. Then
{a) u has an associate A that is infinitely divisible in S, and
(b) there exists a one-parameter continuous convolution semigroup (A;) in S
and a compact connected subgroup C of N(K)/M such that A\; = ¢\ and
cM € C for some compact subgroup M containing K.

Proof: Let I() = {g € G | gu = pg = p}. Then, by replacing v, by vnwi(),
we may assume that

VnWi(p) = Vn

forallm > 1. Let A = {v¥ | k < k,,n > 1}. Then since S is strongly stable,
A is weakly shift compact and hence, by Lemma 7.1, A is relatively compact.
Since v, € A for all n > 1, by passing to a subsequence we may assume that
(vn) converges. Let v be the limit point of (¢,). Then v/ € 4 and hence () is
relatively compact. We now claim that 17 is a factor of u for all j > 1. For any
7 > 1, we have, for large n,

Bo — pkn=f,J
vt = vl

By letting n — oo, over a subsequence of (n), we get that
H= /\j Ilj

for all j > 1. Thus, v is a factor of u for all 7 > 1. Then by 22.12 of [RS], v is
an associate of y and hence, by 22.13 of [RS], v is an associate of wy(,). Let u be
a unit in S such that v = uwy(,). Then it is easy to see that 7, = uly, - Wiy
Since 17 € A for all j, we get that (u/) is relatively compact, in particular (u*~)
is relatively compact. Then again by passing to a subsequence (k,), if necessary,
we may assume that «*» — u’, a unit in S. This implies that nf~ — u'~ly =
say.

Let p = wy(u). Then pA = A. It is clear that 7, is I(u)-invariant. Now using a
diagonal process and by passing to a subsequence we may assume that

nllk"/m] — /\l/m

as n — oo for all m € N. Also, since each 0, is I(u)-invariant, Ay/m, is also
I(yp)-invariant.
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We now claim that A’{;m = A for all m > 1. Now for m > 1,

pln/mimprn = pkn

for some 0 < r, < m. Then by taking limit when n — oo over a subsequence of
(n), we get that /\’f;mp = A and hence Xf}m = A. This proves that an associate
of i is infinitely divisible.

)\(m+1)

We now claim that Ay /pm: = 1/ (ma 1)t

for all m > 1. For large n,

nr[zkn /mY nLkn/(m+1 )!](m+1)77;r;n

for some 0 <71, <m+ 1 and for all m > 1. It follows from n,, — p that

— ){m+D)
Aijmy = )‘17(m+1)!

for all m > 1.

Now by Lemma 3.1.30 of [He] there exists a semigroup homomorphism f: Qt —
S such that

f(/mY) = Ayym

for all m € N. Since f((0, 11N Q%) C A is relatively compact by Theorem
3.5.1 of [He], there exists a compact connected group C in S and a continuous
convolution semigroup (A;) such that A; = cA for some ¢ € C. It is easy to
see that, for r < 1, f((0,7) N Q) is contained in the set of factors of A. Since
C =N f(0,7r)NQT), we get that C is contained in the set of factors of A.
This implies that the identity of C is an idempotent factor of A. Thus, there
exists a compact subgroup L of G such that C is a compact connected subgroup
of N(L)/L and A *wy = A. Since I(y) = I()), we get that L C I(u). Since
N(L) = N(K)L, we get that A\; = v\ and u is contained in a compact connected
subgroup of N(K)/M where M = N(K)N I(u). [ |

As a consequence of the above theorem and the results in the previous sections,
we have the following functional limit theorem for Gelfand pairs.

THEOREM 7.2: Let G be a locally compact second countable group and (G, K)
be a Gelfand pair satisfying condition (*). Suppose G is either (a) connected
or (b) almost connected and G has a compact normal subgroup M such that
G/M is a Lie group and Ad(G/M) is an almost algebraic group or (c) G has
a compact open normal subgroup or (d) p-adic algebraic group or a compact
extension of a unipotent algebraic group (connected nilpotent Lie group). Let S
be the semigroup of all K -biinvariant probability measures on G. Suppose N(K)
is strongly root compact. Then the conclusions of Theorem 7.1 hold for S.
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Remark: It should be remarked that by verifying conditions in Theorem 2.3 of
[Te] one may try to prove the functional limit theorem, but our proof is simpler
(maybe because it is a particular case) and arguments are independent of the
proof of Theorem 2.3 of [Te].

THEOREM 7.3: Let (G, K) be a symmetric pair. Suppose G is 2-root compact
and (G, K) satisfies condition (*). Let S be the semigroup of all K-biinvariant
probability measures on G and (v,,) be a sequence in G such that vy — p € S.
Then p is embeddable in a continuous convolution semigroup in S.

Proof: We first claim that N(K) is compact. For any € N(K), since (G, K)
is a symmetric pair, 27! € K2K = K which implies 22 € K. Since G is 2-
root compact, N(K) is compact. By Theorem 7.1, 4 has an associate A that is
infinitely divisible and uX is embeddable in a continuous convolution semigroup
in S for some u contained in a compact connected subgroup N(K)/M where
M = N(K)NI(p). Since all K-biinvariant measures are symmetric, N(K)/M is
a abelian group and all its elements are of order 2. This implies that N(K)/M
has no connected subgroups and hence A is embeddable. It is clear from the proof
of Theorem 7.1 that A = uy and u is a limit of (u**). Choosing k, = 2n, we
may prove that A = pu. Thus, u itself is embeddable in a continuous convolution
semigroup. 1

Remark: 1In [He2], it is proved that infinitely divisible measures are embeddable
for discrete Gelfand pairs.

8. Normability and infinitesimal limits

In this section we study the second and third theorems of Khinchin. Let S be any
Hausdorff topological semigroup and I be a directed set. An I-array is a system
((tij)?g)ie 1, tij € S. In particular, if I is the set of positive integers, we say
that (¢;;) is a triangular system. An [-array (t;;) is infinitesimal if, for every
neighbourhood U of identity in S, there is an i € I such that ¢;; € U for all i > i
and all 1 < j < n(i). We say that s € S is an infinitesimal limit if there exists
an infinitesimal I-array (t;;) such that s = lim([[, ¢;;). Khinchin’s third theorem
says that any infinitesimal limit is infinitely divisible in S = P(R). Khinchin’s
third theorem was extended to general abelian groups by Ruzsa and Szekely (see
[RS]). We prove an analogue of this for Gelfand pairs. We first establish the
normability of the semigroup S of K-biinvariant probability measures on G for
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Gelfand pairs (G, K). For any A € S define A by

for all A € S, that is, measures in S are all normal.

We denote by S* the semigroup of symmetrization of measures in S. Let
®: S — S° be the map defined by

B(A)=A%A

for all A € S. Since S is a commutative semigroup, we get that ® is a homomor-
phism of S into S°. For any A € S, by T) we denote the set of all factors of A in
S and, for any p € S°, by T,; we denote the set of all factors of x in $°. We now
prove the following:

LeMmaA 8.1: For any A € S, ®()\) is a the shift of an idempotent if and only if
the shift of A is an idempotent. For A € S, let yu = ®()). If there is a continuous
partial homomorphism f, from T} into {0,00) such that f,(u) > 0, then there
exists a continuous partial homomorphism f, from T) into [0, 00).

Proof: Suppose A X is a shift of an idempotent, say wpr. Then S(A)S(A\)~! C
uM for some u € N(K). This implies that uM contains the identity of G and
hence u € M. Thus, A} is an idempotent. Since ) is normal, by Lemma 2.1 of
[E], we get that A is a shift of an idempotent. The converse part and the second
part of the lemma, are obvious. |

We now prove the existence of a partial homomorphism for any commutative
hypergroup (see [BH]| for details on hypergroups); the proof is quite similar to
the case of locally compact abelian groups (see [RS}).

PROPOSITION 8.1: Let K be a commutative second countable hypergroup. Let
X € P(K) be a measure such that A * ) is not an idempotent. Then there exists
a continuous partial homomorphism fy: Ty — [0,00) such that fy()\) > 0.

Proof: Since A * ) is not an idempotent, by Theorem 2.2.4 of [BH], there exists
a continuous bounded multiplicative function x on K such that

0< PO < L.
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Let fa: T — [0,00) be the map defined by

frv) = =log(Iv(x)I*)

for all v € T). Then, by Theorem 2.2.4 of {BH], f\ is a continuous partial
homomorphism with the required condition. |

We now deduce the normability for Gelfand pairs.

COROLLARY 8.1: Let G be a locally compact second countable group and (G, K)
be a Gelfand pair. Suppose the semigroup S of all K-biinvariant probability
measures on G is a Hungarian semigroup. Then S is a normable Hungarian
semigroup.

Proof: By Theorem 1.1.9 of [BH], the double coset space G//K is a hypergroup.
By Theorem 1.5.20 of [BH], S is isomorphic to probability measures on G//K.
Since (G, K) is a Gelfand pair, G//K is a commutative semigroup and hence the
corollary follows from Proposition 8.1. |

We now prove Khinchin’s Theorems for certain Gelfand pairs.

THEOREM 8.1: Let G be a locally compact second countable group and (G, K)
be a Gelfand pair. Suppose G is as in Theorem 4.1 or Theorem 4.2 or Theorem 5.1
or Theorem 5.2 or Theorem 6.1 or Theorem 6.2. Then the semigroup S of all K-
biinvariant probability measures on G is a stable normed Hungarian semigroup.
Consequently, Khinchin’s first, second and third theorems hold for S. Moreover,
if N(K) is compact or N(K)/K is divisible and strongly root compact, then any
anti-indecomposable element in S or any infinitesimal limit in S has an associate
that is embeddable in S.

Proof: 1t is already proved that the semigroup S of all K-biinvariant probability
measures on G is a stable Hungarian semigroup. Now by Corollary 8.1, S is a
stable normable Hungarian semigroup. By Theorem 24.17 and Theorem 26.9 of
[RS], anti-indecomposable elements of S and infinitesimal limits in S are weakly
infinitely divisible.

Let p in S be either anti-indecomposable in S or p is a limit of an infinitesimal
I-array. Then for each n > 1, there exists a s, and a unit u,, such that g = u, pu?.
If N(K) is compact, then

u',z: —A€ES
for some subsequence (k,} of (n) and ) is an associate of . Now from Theorem

7.2, we deduce that A has an associate that is embeddable. Thus, an associate
of p is embeddable.
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Suppose N(K)/K is divisible and strongly root compact. Since u, € N(K),
there exists a x, € N(K) such that 2wk = u,wk for all n > 1. This implies
that

H= (xnyn)n

for all n > 1. By Theorem 7.2, an associate up of u is embeddable for some unit
u contained in a compact subgroup of N(K). ]

Remark: Let (G, K) be a Gelfand pair such that (a) G is connected or (b) G is
an almost connected group considered in the article or (¢) G is discrete or (d) G
is a Zariski-connected p-adic algebraic group or (e) G is a compact extension of
a unipotent algebraic group or a connected nilpotent Lie group (not necessarily
satisfying condition (*)) and S be the semigroup of all K-biinvariant probability
measures on G. Suppose A € S is a bald element, that is, a measure having no
idempotent factors. Then using the factor compactness results (modulo the group
of units, which follows for the connected or almost connected case from the fact
that for an almost connected Lie group G and a compact subgroup M containing
K, N(M)/MN(K) is finite (see [HHSWZ])) and applying the arguments of K. R.
Parthasarathy (Chapter IV, Theorem 11.3 of [P]) as in Theorem 5.4.14 of [BH],
one may prove Khinchin’s factorization theorem for any bald A. Thus, it shows
that

(a) any measure in S is a product of a idempotent in S and a measure in S

that has a Khinchin-type decomposition in S, and
(b) any measure u € S has Khinchin’s decomposition in a subsemigroup of S.

As a consequence of Theorem 8.1 we obtain Khinchin’s Theorems for compact
symmetric spaces.

COROLLARY 8.2: Let G be a compact connected semisimple Lie group and K
be a compact connected subgroup of G such that G/K is a compact Riemannian
symmetric space. Then the semigroup S of K-biinvariant probability measures
on G is a normable strongly stable Hungarian semigroup and Khinchin’s first,
second and third theorems hold for S. Moreover, any anti-indecomposable or
infinitesimal limit has an associate that is embeddable.

Proof: Let S be the semigroup of K-biinvariant probability measures on G.
Since G/K is a Riemannian symmetric space, .S is a commutative semigroup.
By Lemma 2.3, S satisfies condition (*). Thus, since G is second countable, the
corollary follows from Theorem 8.1. |
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Remark: We note that I. R. Truhina [Tr] and J. Lamperti [L] have earlier in-
vestigated and proved Khinchin’s factorization theorem for probability measures
on irreducible compact symmetric spaces of Rank 1. In [L], this was achieved by
covering by delphic semigroups. Thus, our treatment is completely different and
we consider the general cases.

9. Gaussian measures on compact Gelfand pairs

Gaussian measures on R have two well-known properties:
1. Gaussian measures on R have only Gaussian factors which is known as
Cramér’s theorem;

2. Gaussian measures have no indecomposable factors.

Since Gaussian measures on R are infinitely divisible, the second property follows
from the first property (see [Fe]).

On the other hand, Marcinkiewicz [Ma] showed that these properties are not
verified by Gaussian measures on the circle. Truhina [Tr] proved that SO(n)-
invariant Gaussian measures on the spheres S™ ~ SO(n + 1)/SO(n) are not
anti-indecomposable. In this section we extend these results to compact Gelfand
pairs. As in the previous sections for any compact subgroup L, we denote the
normalized Haar measure on L by wy,.

THEOREM 9.1: Let G be a compact connected Lie group and K be a compact
subgroup of G. Suppose (G,K) is a Gelfand pair. Let u be a K-biinvariant
probability measure on G such that the inequality

(i) u(E) 2 awg(E), 0<a<1

holds for all Borel subsets E of G. Then p has an indecomposable factor.

In [Fe], G. M. Feldman proved a similar theorem for measures on compact
abelian groups. We apply some of the techniques of Theorem 4.17 of [Fe]. We
first prove the following lemma.

LEmMMA 9.1: Let G, K and mg be as in Theorem 9.1. Suppose p is a K-
biinvariant probability measure on G verifying inequality (i). Then p decomposes
in the following way:

poowG

T (1 - a)wk + awg]

(ii) n=

where 0 < a < 1 is as in inequality (i).
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Proof: We now verify the result using the obvious properties:

PBrwg =H, WwWegxwWg =wg and p*wg=wg.

— awg a
H—l—:—*[(l—a)wKﬂ-awG] =(u—awa)wx+m(,u—awg)wg
= awg + a w o’
THT T T e T T gMe
a(l —a)—a+a?
ST ETTY
—-a
:;},‘ '

We now define K-biinvariant compound Poisson measures on Gelfand pairs.
Let G be a locally compact group and K be a compact subgroup of G. Let ~
be a K-biinvariant signed bounded measure on a locally compact group G. We
define the compound Poisson measure ¢(y) by

X n
=@ 3T
—o0 n:

0

where, by definition, v” = wg. It is easy to see that if v is a positive measure,

e() is a K-biinvariant probability measure on G. We now prove Theorem 9.1.

Proof of Theorem 9.1: Observe that if £ > 0, then
(iii) e(kwg) = e *wr + (1 — e *)wg.

Choosing k > 0 such that @ = 1 — e~*, we see by Lemma 9.1 that e(kwg)
is a factor of p. It is sufficient to show that e(kwg) € I, the set of all anti-
indecomposable measures. By hypothesis, there exist two points z,y € G but
z,y € K such that y ¢ KzK. Set z = yz~! € G, so that y = zz. By Urysohn’s
Theorem, there exist two open sets U; and U, such that

Ui = KUzK
for all i = 1,2 and

U10U2=0,
xz €Uy, y € Uy,
e,z & Us.

Define Us = K(2U;) NUs and V = G \TUj. Then Uz and V are K-biinvariant
open sets such that U; C V and z € V. It follows that

Us;c KzUy cVV
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and hence
VV =G.

Let + be the restriction of wg to the open set V. Then since w¢ is K-biinvariant
and V is K-biinvariant, it is easy to see that the measure v is K-biinvariant. Also,
it can be seen that, since wg — is a positive measure, e(ky) is a factor of e(kwg).
We now claim that ~ x v has a strictly positive density xv * xv. It is well-known
that, since V is an open set, xy * xv is a continuous function. Let £ € VV. Then
there exist vy, vs € V such that x = vyvs. Since V is an open set and the map
g+~ xg~! is continuous, there exists a neighbourhood W of v2 in G such that

sW-lcv

This implies that
wleV

for all w € W. Thus,

xv * xv(z) = /V xv (zg~")dwe (9)
ng(V N W)
since v2 € VN W, VN W is a non-empty open set in G and hence
xv *xv(z) >0

for all z € VV. Since G = V'V, xv * xv is strictly positive. It is easy to see that
Xv * xv is the density of v = v. Since xy * xv is continuous and G is compact,
there exists a constant ¢ > 0 such that

xv *xxv(z)>c
for all x € G. It follows that, for any Borel subset E of G,
v(E) 2 cwg(E)
and hence, for some constant 0 < b < 1,
e(k7)(E) 2 bwe(E)
for all Borel subsets F of G. Using again Lemma 9.1 and (iii) we get that

(iv) e(ky) = 1 * elkiwg)
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for a measure uy € Pg(G). We may suppose that 0 < k; < k. Note that
the constants a,b, k, k; can be made arbitrarily small. Since e(kv) is a factor
of e(kwg), in order to prove that e(kwg) has an indecomposable factor, it is
sufficient to show that e(kvy) has an indecomposable factor.

In the last part of the proof we will show that, for 0 < k < k; small enough, the
measure p; € Iy. Suppose, on the contrary, that for any 0 < k; < k, 1 € Iy. By
Theorem 6.2, the measure p is infinitely divisible and a power of it is embeddable.
Now it is easy to see that any power of u; also satisfies equation (iv). Thus, by
replacing py by a suitable power of u,, we may assume that p; is embeddable in
a wr-continuous convolution semigroup (i;)s>0, where L is a compact subgroup
of G containing K. So (G, L) is also a compact Gelfand pair. Compact Gelfand
pairs are strong hypergroups (see 4.3.23 of [BH]) and, by 5.2.15 and 5.2.29 of
(BH], we have the following Lévy Khinchine formula for the semigroup (¢)¢>o0:

fe(x) = exp{=t(a + qx) + / (1 - Re(x(2))dn(x))}

where a € R, and ¢ is a non-negative K-biinvariant quadratic form on G, 7 is
the Lévy measure (a positive K-biinvariant measure on G) and x varies over all
of the dual of (G, L).

On the other hand, (iv) implies that

w1 = e(ky — kiwe).

In a similar way as Feldman (see 4.13 of [Fe]) one shows that a =0 and ¢ =0
and that, if k¥ and k; are sufficiently small, then the Lévy measure 7 is finite and
n(G) is arbitrarily small. This yields that p1 = e(n) and it follows from (iv) that

ky — kiwg =7,
which is impossible because
n20

and
(ky — kywe)(Us) < 0.

Thus py ¢ Io, that is, g is not anti-indecomposable and hence p is not anti-
indecomposable. |

Remark: In the proof of Theorem 9.1, we use the hypothesis that G is a con-
nected Lie group to get the following: (a) the double coset space K\G/K has
more than two points and (b) a finite power of a unit in Px(G) is embeddable
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in Pg(G). The first statement (a) is always true for a connected group as the
double coset space K\G/K is a connected space and the second statement (b)
is true if (G, K) is a symmetric pair. Thus, Theorem 9.1 may also be proved for
more general compact Gelfand pairs which satisfy (a) and (b).

COROLLARY 9.1: Let (G, ) be as in Theorem 9.1 and p be a K-bi-invariant
probability measure on G. Suppose p is an absolutely continuous measure with
everywhere positive continuous density. Then p is not anti-indecomposable.

Proof: Suppose g has an everywhere positive density, say f; then it is easy to
see that, for some a > 0,

f(z)>a
for all x € G. This implies that

#(E) > awg(E)

for all Borel subsets E of G. Now the corollary is immediate from Theorem 9.1.
]

COROLLARY 9.2: Let (G, K) be a Gelfand pair with G a compact connected
Lie group and K a compact subgroup of G. Let (vt):>0 be the heat semigroup
generated by the Laplace-Beltrami operator A for the Riemannian homogeneous
manifold G/K. Then ~; ¢ Iy for all t > 0. In particular, the measures (7y;)t>0
have non-Gaussian factors, that is, Cramér’s theorem does not hold for (7y;)t>o.

Proof: We use the fact that the measures (y;); > 0 are K-invariant and that they
have everywhere positive smooth densities (see Theorem 5.2.1 of [Da]). 1

The following is easily deduced from Corollary 9.2.

COROLLARY 9.3: Let G/K be a Riemannian symmetric space of compact type.
Then the Gaussian measures on G/K (defined as belonging to the heat semi-
group) have indecomposable factors and do not satisfy Cramér’s theorem.

10. Central limit theorems of Lindeberg—Feller type

Central limit theorems for a triangular array of measures converging to a Gaus-
sian measure are known on Euclidean spaces, locally compact abelian groups
and symmetric spaces. Gaussian measures on a Gelfand pair were introduced by
Heyer (see [Hel]) by using the generalized Laplacians, introduced by Duflo [Du].
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In order to discuss the central limit problem on Gelfand pairs, we must intro-
duce a notion of dispersion D of a measure i € Pi(G), having the properties:

D: Pk (G) —» [0, o],
(1) D(p1 * p2) = Dp1 + Dpz

and
D= / Qdy

for a continuous K-biinvariant function Q.

A natural candidate for the function @ is a positive-quadratic form on (G, K)
defined according to Faraut-Harzalah [FH] as a real continuous symmetric K-
biinvariant function verifying

(i) / Q(eky)dk + / Q(aky™)dk = 2(Q(z) + QW)
K K

for all z,y € G.

The property (ii) is equivalent to (i) when at least one of the measures p1, pto
is symmetric. It is then natural to seek a Gaussian central limit theorem for a
triangular array of symmetric measures.

In [G1] such a theorem was proved on noncompact Riemannian symmetric
spaces with dispersion defined using functions @ verifying the condition

/K Q(aky)dk = Q(z) + Q)

for all z,y € G.
It is easy to see that

R*=Q+0Q

defines a quadratic form and that a similar central limit theorem with dispersion
D) = [ Qau

holds for symmetric K-invariant measures on noncompact symmetric spaces
G/K.

Moreover, we can show that the sufficient technical condition in [G1] is also
necessary.
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